Optical Discs for Archiving

Information Technology Laboratory Information Access Division

Fred Byers National Institute of Standards and Technology (NIST) E-mail: byers@nist.gov

OSTA - Dec. 6, 2004

Topics

Background
Concerns/questions about media
Discs for archiving
Test method proposal
Monitoring disc performance

*Survey of the Government Information Preservation Working Group

All agencies are expecting exponential growth in the volume of their digital assets.

Media specific concerns are:

- 1. Capacity of medium
- 2. Reliability, durability long-term accessibility of complete data on the medium.
- 3. Would like media designed for long-term storage use.
- 4. Would like media analysis tools.

*Source: GIPWoG Survey, Dec. 2003

Other User Questions About Using Optical Discs

- Can I trust optical discs for long-term or archival storage?
- How long will the content on my disc last?
- What is the minimum number of years I can expect?
- Which disc should I buy?
- What should I look for in a disc?
- Does price or brand make a difference?
- Does the recorder make a difference?

These above points are not unique to optical discs.

OSTA - Dec. 6, 2004

Most Commonly Asked Question: How long will [my] optical discs last?

 $\sqrt{\text{User can control}}$

 $\sqrt{\text{User can control}}$

? User can control

× User cannot control

Answer: It depends

- 1. Handling
- 2. Storage
- 3. Initial recording quality
 - Condition of disc before recording
 - Quality of burn (depends on disc and burner)
- 4. Disc construction
 - Materials
 - Manufacturing process, quality control

Initial DVD Recording Analyzed

OSTA - Dec. 6, 2004

Disc Construction:

Media Marketed for Archiving, Long-Life,

- Discs marketed for long-term storage
 - How is their performance different from regular discs?
 - How many years will they last? Longer LE?
 - How does manufacturer A compare to manufacturer B?
 - How are they determined to be longer lasting?
- No standard short test for these discs.

Proposed Method for Test

Goals:

- Industry Standard Test Method
 - A consistent across industry test for long-term or archival storage marketed discs
- A test that industry accepts
 - Industry supports the development and the use
- Labeling for consumers
 - Statement or logo identifying disc as passing the test
 - A metric for the consumers to use

Existing LE Standard Test: is Time Consuming, Expensive

- Typically one to two years

 (shortest time possible is still > 6 mos.)
 too long to bring new disc to market
- Need equipment, space, expertise
- Cost of skilled labor resource or cost of out sourcing

LE - Accelerated Aging Times

Stress Test-Set	Stressed at (T _{inc} , RH _{inc})	Incubation duration	Minimum total time	Specimen quantity
1	80°C, 85%	500 hrs	2000 hrs	10
2	80°C, 70%	500 hrs	2000 hrs	10
3	80°C, 55%	500 hrs	2000 hrs	15
4	70°C, 85%	750 hrs	3000 hrs	15
5	60°C, 85%	1000 hrs	4000 hrs	30
			13,000 hrs total	80 total

Incubation + Testing Time

No. of Chambers	Incubation time	No. of weeks	Testing time (2 analyzers)	Total Time
1	13,000 hrs	78 wks	6 wks	84 wks
2	7,000 hrs	42 wks	6 wks	48 wks
3	5,000 hrs	30 wks	6 wks	36 wks
4	4,000 hrs	24 wks	6 wks	30 wks

$T_{50} = Ae^{\Delta H/kT}e^{(B)RH}$ or $InT_{50} = InA + \Delta H/kT + (B)RH$

Existing CD-R Standard LE Test:

Constants:	Derived from test data:	Calculate:
k, T (Temp.), RH	T_{50} (Time)	A, Δ H, B

 $T_{50} = Ae^{\Delta H/kT}e^{(B)RH}$ or $InT_{50} = InA + \Delta H/kT + (B)RH$

Existing CD-R Standard LE Test:

Constants:	Derived from test data:	Calculate:
k, T (Temp.), RH	T_{50} (Time)	Α, ΔΗ, Β

Alternative Use of Existing Equation

Constants:	Make T ₅₀ a given:	<u>Calculate from $T_{50} = X$:</u>
k, T (Temp.), RH, T ₅₀	Make $T_{50} = X$ years	Α, ΔΗ, Β

$InT_{50} = InA + \Delta H/kT + (B)RH$

	(Kelvin)		From AES38-2000 Standard example				
Celsius	Т	RH	∆ H/k	В	A		
20	293.15	≤50%	7.83E+03	-9.72E-03	8.26E-07		
25	298.15	≤50%	a set and	and the second	and the second		
60	333.15	≤85%					
70	343.15	≤85%	and the state of the				
80	353.15	≤85%					
Boltz	mann's cons	stant	a start and	a present for			
k =	= 1.38E-23 J/	κ					

$InT_{50} = InA + \Delta H/kT + (B)RH$

	(Kelvin)		From AES38-2000 Standard example				
Celsius	Т	RH	∆H/k B		A		
20	293.15	≤50%	7.83E+03 -9.72E-03		8.26E-07		
25	298.15	≤50%					
60	333.15	≤85%	Possibilities fro	m alternate da	ta for 50 yrs		
70	343.15	≤85%	∆H/k B		Α		
80	353.15	≤85%	8.01E+03	-6.20E-03	8.26E-07		
Boltzmann's constant			8.00E+03	-9.72E-03	1.00E-06		
k =	= 1.38E-23 J/	κ	7.83E+03 -9.84E-03 1.80E				

CD-R LE Test Standard Data Calculated

Using the stan years at 25C/5	dard's data for 0%RH	14.7	Cond Var	ition iables		
	Condition	Celsius	т	RH%	∆ H/kT	B(RH)
Room Temp.	25C/50%RH	25	298.15	50	2.63E+01	-4.86E-01
Storage	20C/50%RH	20	293.15	50	2.67E+01	-4.86E-01

ln(t50) =	Projected Time to Failure		
In mean	Hours	Years	
In(A)+∆H/kT+ B(RH)	EXP(ln(t50))		
11.77	129220.77	14.75	
12.22	202238.79	23.09	

OSTA - Dec. 6, 2004

Example for 50 years $InT_{50} = InA + \Delta H/kT + (B)RH$

InT₅₀ for 50 years = 12.99 at 20°C, 50%RH $\rightarrow \ln T_{50} = 12.99$

$12.99 = \ln A + \Delta H/kT + (B)RH$

OSTA - Dec. 6, 2004

$ln(A) + \Delta H/kT + B(RH)$ for 50 years							Time to Fa	ailure	
			Cond Va	ition riables			ln(t50) =	Hours	Years
	Condition	Celsius	т	RH%	∆ H/kT	B(RH)	In(A)+∆H/kT+ B(RH)	EXP(In(t50))	
Storage	20C/50%RH	20	293.15	50	2.73E+01	-3.10E-01	12.99	438085.09	50.01
Stress 1	80C/85%RH	80	353.15	85	2.27E+01	-5.27E-01	8.13	3407.56	0.39
Stress 2	80C/70%RH	80	353.15	70	2.27E+01	-4.34E-01	8.23	3739.66	0.43
Stress 3	80C/55%RH	80	353.15	55	2.27E+01	-3.41E-01	8.32	4104.14	0.47
Stress 4	70C/85%RH	70	343.15	85	2.33E+01	-5.27E-01	8.79	6596.67	0.75
Stress 5	60C/85%RH	60	333.15	85	2.40E+01	-5.27E-01	9.49	13287.04	1.52

$InT_{50} = InA + \Delta H/kT + (B)RH$

	Condition	°C	°K	RH%	∆ H/kT	B(RH)
Storage	20C/50%RH	20	293.15	50	2.73E+01	-3.10E-01
Stress 1	80C/85%RH	80	353.15	85	2.27E+01	-5.27E-01
Stress 2	80C/70%RH	80	353.15	70	2.27E+01	-4.34E-01
Stress 3	80C/55%RH	80	353.15	55	2.27E+01	-3.41E-01
Stress 4	70C/85%RH	70	343.15	85	2.33E+01	-5.27E-01
Stress 5	60C/85%RH	60	333.15	85	2.40E+01	-5.27E-01

	ln(t50)	Time to Failure		
		Hours	Years	
	In(A) + ∆H/kT + B(RH)	EXP(In(t50))		
Storage	12.99	438085.09	50.01	
Stress 1	8.13	3407.56	0.39	
Stress 2	8.23	3739.66	0.43	
Stress 3	8.32	4104.14	0.47	
Stress 4	8.79	6596.67	0.75	
Stress 5	9.49	13287.04	1.52	

	Possibilities from alternate data for 50 yrs		
	∆ H/k	В	Α
	8.01E+03	-6.20E-03	8.26E-07
	8.00E+03	-9.72E-03	1.00E-06
	7.83E+03	-9.84E-03	1.80E-06
Condition	Years	Years	Years
Storage 20C,50%RH	50.01	50.09	50.01
Stress 1	0.62 (32wks)	0.35 (18wks)	0.39 (20wks)
Stress 2	0.72 (37.5wks)	0.40 (21wks)	0.43 (22wks)
Stress 3	0.83 (43wks)	0.46 (24wks)	0.47 (24.5wks)
Stress 4	1.20	0.67 (35wks)	0.75 (39wks)
Stress 5	2.42	1.35 (70wks)	1.52 (79wks)

OSTA - Dec. 6, 2004

First Stress Test Set 500 hour intervals x 4

OSTA - Dec. 6, 2004

Fifth Stress Test Set 1000 hour intervals x 4

OSTA - Dec. 6, 2004

Performing the short test

- Test at three stress test levels (instead of five) long enough to determine T₅₀ at each stress level.
 - "Long enough time" needs To Be Determined (TBD).
 - Acceptable time for manufacturers needs TBD
 - Shorter incubation time intervals.
- Calculate A, Δ H, B from T₅₀ at each stress level
- Compare A, △H, B against possible combinations for 50 years at storage condition, 20°C, 50%RH

Still Needed

- Spreads/window for A, ∆H, B (reasonable/actual highs and lows)
- Do tests at shorter times/intervals

Consumer/Industry Benefits From "Archival Grade" Test Method

• Consumer

- Consumer uncertainty reduced
- More realistic consumer expectation
- Better, or more confident migration planning
- Industry
 - Industry-wide standard test method
 - Time to market
 - Testing cost (compared to existing LE testing)
 - Pricing (cost/margin recovery for testing, QC, etc.)

Request for Analysis Tools

* Would like media analysis tools.

A suggestion for drive manufacturers

*GIPWoG Survey, Dec. 2003

- Measuring Performance -

- Early Warning Indicator
 - Error Alert
 - Check Disc
- A warning about error rates that are approaching BLER-max (CD) or PI-SUM8 max (DVD).
 - May also consider burst errors, reflectance or other parameters
- Possibilities:
 - a light as an indicator
 - a pop-up window giving suggestions for corrective action
 - actual number shown (good for initial error rate)
 - included in virtually all drives or only high-end drives.

Consumer/Industry Benefits From "Early Warning Indicator"

Consumer

- Easy monitoring of disc performance
- Copy disc before uncorrectable errors occur
- Significantly reduce the chance of a catastrophic failure
- Industry
 - Value added drives
 - Higher-end drives?
 - Drives as testers

Thank you! NIST Information Technology Laboratory Information Access Division Digital Data Preservation

Fred Byers, Oliver Slattery, Jian Zheng byers@nist.gov

OSTA - Dec. 6, 2004

Second Stress Test Set 500 hour intervals x 4

OSTA - Dec. 6, 2004

Third Stress Test Set 500 hour intervals x 4

OSTA - Dec. 6, 2004

Fourth Stress Test Set 750 hour intervals x 4

OSTA - Dec. 6, 2004

 Joint Technical Commission AES/SC-03/ ISO TC-42, WG-5, Task group 5