ANC"TA
AS4AC A VAV

OSTA-2
Optical Storage Revisien2.00
Technology Association April-3-1998

ANOTA il
W IrL\J| \\:ﬂ

Universal Disk
For mat™®

Specification

March 15, 2000

Aprik-3,1998
© Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000
Optical Storage Technology Association

ALL RIGHTSRESERVED

REVISION HISTORY

1.00 October 24, 1995 Original Release

1.01 November 3, 1995 DVD appendix added

1.02 August 30, 1996 Incorporates Document Change Notices DCN 2-001
through DCN 2-024

1.50 February 4, 1997 Integrated support for CD-R and CD-RW media (DCN 2-
025 through DCN 2-032)

2.00 April 3, 1998 Integrated support for ECMA 167 3 Ediition which

included the support for named streams.
(DCN 2-033 through DCN 2-064)

201 March 15, 2000 Incorporates DCNs 5000, 5002, 5004, 5006-5009, 5013-
5015, 5018-5021, 5024-5027, 5029-5032, 5034-5042,
5044-5048, 5050

POINTS OF CONTACT

Optical Storage Technology Association OSTA UDF E-Mail Reflector

Ray Freeman To subscribe: address request@list.osta.org with
311 East Carrillo Street “subscribe udf” in the subject.

Santa Barbara, CA 93101 To unsubscribe: address request@list.osta.org with
Td: +1 805 963-3853 “unsubscribe udf” in the subject.

Fax: +1 805 962-1541 Send messages to: udf@list.osta.org

Email: ray@osta.org

http://www.osta.org

Technical Editor
editor.udf @osta.org

Important Notices

This document is a specification adopted by Optical Storage Technology Association (OSTA). This document may be revised by OSTA. It isintended solely
as aguide for companies interested in devel oping products which can be compatible with other products devel oped using this document. OSTA makes no
representation or warranty regarding this document, and any company using this document shall do so at its sole risk, including specificaly the risks that a
product developed will not be compatible with any other product or that any particular performance will not be achieved. OSTA shal not be ligble for any
exemplary, incidental, proximate or consequential damages or expenses arising from the use of this document. This document defines only one approach to
compatibility, and other approaches may be available in the industry.

This document is an authorized and gpproved publication of OSTA. The underlying information and materids contained herein are the exclusive property of
OSTA but may be referred to and utilized by the genera public for any legitimate purpose, particularly in the design and devel opment of writable optical
systems and subsystems. This document may be copied in whole or in part provided that no revisions, dterations, or changes of any kind are made to the
materids contained herein. Only OSTA has the right and authority to revise or change the materia contained in this document, and any revisions by any party
other than OSTA are totally unauthorized and specifically prohibited.

Compliance with this document may require use of one or more features covered by proprietary rights (such as features which are the subject of a patent, patent
gpplication, copyright, mask work right or trade secret right). By publication of this document, no position is taken by OSTA with respect to the validity or
infringement of any patent or other proprietary right, whether owned by aMember or Associate of OSTA or otherwise. OSTA hereby expressly disclaims any

ligbility for infringement of intellectua property rights of others by virtue of the use of this document. OSTA has not and does not investigate any notices or
alegations of infringement prompted by publication of any OSTA document, nor does OSTA undertake a duty to advise users or potentia users of OSTA
documents of such notices or alegations. OSTA hereby expressly advises al users or potentia users of this document to investigate and andyze any potential
infringement situation, seek the advice of intellectua property counsel, and, if indicated, obtain alicense under any applicable intellectua property right or teke
the necessary steps to avoid infringement of any intellectua property right. OSTA expressly disclaims any intent to promote infringement of any intellectua
property right by virtue of the evolution, adoption, or publication of this OSTA document.

Universal Disk Format™® and UDF™® are traceregistered marks of the Optical Storage Technology Association.

CONTENTS

1.

INTRODUGCTION .ot e e e e e e e e e e e e e e e e e e aeeanans 1
11 DOCUMENT L AYOUL ...ttt et snee e 2
12 COMPIIANCE ...ttt bt bbbttt en e 3
1.3 GENET Al REFEIBINCES......ceeeeeeeeeeeeeeeeeeeeeeee e 3

131 REEENCES.. ..o 3

1.3.2 DEfNITIONS ..o 4

IS T T 1= £ 1 21T 6

RSN X o o117 11 ST PP DT PP PP TP TOPPTPPTIN 7

BASIC RESTRICTIONS & REQUIREMENTS ... 8
2.1 [T A 1< o 1= o= TR 11

2 O O g == Tox £ G = TR RSTURTRRPRRRRRRTN 11

202 OSTA CSO CRAISIEC. .. eeeeiueeeiueeeiutee ittt aateeesteeesseeessteessteeeateeesseeesstessnbeesaseessseeessseesnsessnseeans 12

N G B B] 1o TSSOSO TSP UR PP 12

N 1111 = o o F OO P PO P OPTPPOP 13

215 ENELY TENMTTTEN .ot 14

2.2 Part 3 - Volume SErUCTUN € ..o 21
221 DESCIIPLON TAY .ttt 21
222 Primary VOIUME DESCIIPLOc.uiiutiiieiiiiiiee st siee sttt sttt sre et sb b e eane s 22
223 Anchor Volume DeSCriptor POINESoiuiiiieiieiieiteeie et 24
224 Logical VOIUME DESCIIPLONocueiiieiiieeiieeitee sttt st sttt sb et e e 25
225 Unallocated SPace DESCIIPLONcueiiteeiieeiteeiteeiteeste et et ettt sreennee 27
226 Logical Volume INtegrity DESCIIPLONcoviiieiieiiiiiee ittt sttt 27
227 Implemention Use VolumME DESCIIPLON........cciuiiiiiiiiieeiiec ettt 30
2.2.8 Virtual Partition MaD......co.eeieeiiieiieiiee ettt 32
229 Sparable Partition IM8D........cc.eoiioiieieie s 32
2.2.10 Virtual AlOCAETON TaIE......eiiiiiei e 33
2211 SPAINTNG TADIE. ... 36
2212 Partiti ON DESCITIEON ...ttt 39

23 Part 4 - File SYSIEM ...t 40
PG R R B == o] o1 (o g =T PSP U SO PR PRRPROP 40
2.3.2 FilE SO DESCIIPLOLeeiieiiieiiieeeie ettt ekttt ettt en 41
2.3.3 Partition Header DESCIIPIONcivieiieteeii ettt st b e 43
234 Fleldentifier DESCIIPLONciie ettt sb bbbt et b e neeneeane s 44
G T [@2 B 1= o DO PP P PP PP 46
236 FHIEENIIY .o 49
237 Unallocated SPACE ENLIYc.iiiiiiiiieiee ittt 51
2.3.8 SPACE BIitMaP DESCIIPIONeeuteetieti ettt neas 52

19

2.3.9 Partition INtEGIitY ENTIYcoiiiiieiieii ettt nnee 52

2.3.10 Al OCALTON DESCIIPLOISttt be b 52
2311 Al10Cati 0N EXIENE DESCIILONvveaeeeiieieei ettt 54
2.3.12 PAENNAIMIE ... bbbt 55

24 Part 5 - RECON SIIUCTUN ...ttt 55

3. SYSTEM DEPENDENT REQUIREMENTS.....ccii e 56
31 PArt 1 - GENEI@I ...t 56
N 1111 = o o TSP P PO P UPTPPROT 56

3.2 Part 3 - VOIUME SEFUCEUN € ...ttt sttt sttt bbb nreesreennee 57
321 Logical Volume Header DESCIIION.c.viieeiieeiieerieesteesieestee sttt 57

3.3 Part 4 - File SYSIEM ...t 58
3.3 1 Fleldentifier DESCIIPLONccuietieiiete ettt sttt ettt sr e sbeennee 58
I [@2 B I o DO OO P PP OPTOPROT 59

333 R ENIIY et 62

334 EXteNded ALIITDULES........ooiiiiiiece et 66

335 NAMED SITEAIMS. ...ttt ettt ettt et e be e be e enas 76

3.3.6 Extended AttributeS as Named SIFEAMSocviiiiiiiiee e 79

3.3.7 UDF Defined SYSIEM SITEAIMScoieiiiiiitie ittt sttt ettt 80

3.3.8 UDF Defined NON-SySteM SITEAIMScoiuiiiiiiiiieitee sttt sttt 87

4. USER INTERFACE REQUIREMENTS.......ootiiee e 89
4.1 Part 3 -— VOlUME SEIUCLUN ...ttt 89
4.2 Part 4 —— File SYSIEM ... e 89
R 11 = N I OSSOSO URUTURURRTN 89

4.2.2 File 1dentifier DESCITPIONi eeieeeieee ettt 90

5. INFORMATIVE ... ettt e e e e e e e e e e e e e e e aaans 100
51 DeSCriptor LeNGENS ... s 100
52 UsSiNg IMpIementation USE AT GBSoouiiuiiiiiieieesiee ettt 100
521 ENLY TAENMUTIENS ..o 100

522 OFPNEN SPACE.......eeitietiet ettt 100

53 B OOt DESCI IPLON ...ttt ettt st 101
54 Clarification of Unrecorded SECLONS. .. .uuiuiiiiiiiiise s 101
55 TECHNICAl CONTACES.....cueiitiiiiei ittt ettt ettt b e e n e neene e 102
6. APPENDICESt e e e e e e e e e e e e e e e e e e 103
6.1 UDF Entity Identifier DefiNitioNS..........cuoiiiiiiiiiiieieiee e 103

6.2 UDF Entity [dentifier VAIUESc.oouiiiiiiiieiie e 104

6.3 Operating SysStem TAeNTIfIEr Soiiiie e 105
6.4 OSTA Compressed Unicode AIGOritRMooiiiiiieie e 107
6.5 CRC CalCUIBLION ...ttt nb bbb nb e bt bbb b 109
6.6 Algorithm for Strategy TYPE A0cooueerieiiieeriieriiesiie et 112
6.7 Identifier Trandation AlGOritNMS.......oouiiiiii e 113
B.7.1 DOS ALGONTTNIM. ...ttt 113
6.7.2 OS2, Macintosh,Windows 95, Windows NT and UNIX Algorithmcccocviiinnene 124
6.8 Extended Attribute Checksum AIGOrithm ... 129
6.9 RequirementSfor DVD-ROMccoiiiiiiiiiiieiieie e 130
6.9.1 Constraintsimposed by-0n UDF fer-Dy DVD-VIGEOc.oovviiiiiiiieiieieee e 130
6.9.2 Howtoread a UDF DVD-Vide0 diSC......cccueiieiiiiiiiiiiieiieie ettt e 131
6.9.3 ObtaiNiNg DV D DOCUMENESciiuiiiiiiitie ittt ettt ettt 133
6.10 RecommendationSTor CD MEdI@ccouiiiiiiiiieiieiieee s 134
6.10.1 Use Of UDF ON CD-R MEAIA........ceiiiiiiiiiiiiii it 134
6.10.2 Use of UDF 0N CD-RW MEAIA.ctiieiiiiiiiiiiiie e 136
6.10.3 Multisession and MiXed MOOE..........cocuiiiiiiirii e 139
6.11 REAI-TIME FIlES. it 141
6.12 UDF Media Format ReVISION HiSIOIYooiiiiiiiiieiieice s 142
6.1213 Developer RegiStration FOrM ..ottt 143

This page left intentionally blank

1. Introduction

The OSTA Universal Disk Format (UDF™)®) specification defines a subset of the |
standard ECMA 167 3™ edition. The primary goal of the OSTA UDF is to maximize data
interchange and minimize the cost and complexity of implementing ECMA 167.

To accomplish this task this document defines a Domain. A domain defines rules and
restrictions on the use of ECMA 167. The domain defined in this specification is known
asthe “OSTA UDF Compliant” domain.

This document attempts to answer the following questions for the structures of ECMA
167 on a per operating system basis:

Given some ECMA 167 sructure X, for each field in structure X answer the
following questions for a given operating system:

1) When reading thisfield: If the operating system supports the data in
_thisfield then what should it map to in the operating system?

2) When reading this field: If the operating system supports the data in
this field with certain limitations then how should the field be interpreted
under this operating system?

3) When reading this field: If the operating system does NOT support the
data in this field then how should the field be interpreted under this
operating system?

4) When writing this field: If the operating system supports the data for
this field then what should it map from in the operating system?

5) When writing this field: If the operating system does NOT support the
data for thisfield then to what value should the field be set?

For some structures of ECMA 167 the answers to the above questions were self-
explanatory and therefore those structures are not included in this document.

In some cases additiona information is provided for each structure to help clarify the
standard.

This document should help make the task of implementing the ECMA 167 standard easier.

To be informed of changes to this document please fill out and return the OSTA UDF
Devel opers Registration Form located in appendix 6.13.

YDF 2.01 March 15, 2000
UDF2.00 Apri-3-1998

1.1 Document Layout

This document presents information on the treatment of structures defined under standard
ECMA 167.

This document is separated into the following 4 basic sections:

 Basic Redrictions and Requirements - defines the restrictions and
requirements whichthat are operating system independent. |

» System Dependent Requirements - defines the restrictions and requirements
whichthat are operating system dependent.

* User Interface Requirements - defines the restrictions and requirements which
arerelated to the user interface.

* Informative Annex - Additional useful information.

This document presents information on the treatment of structures defined under standard
ECMA 167. The following areas are covered:

& Interpretation of a structure/field upon reading from media

&5 Contents of a structure/field upon writing to media. Unless specified otherwise
writing refers only to creating a new structure on the media. When it applies to
updating an existing structure on the media it will be specifically noted as such.

The fields of each structure are listed first, followed by a description of each field with
respect to the categories listed above. In certain cases, one or more fields of a structure
are not described if the semantics associated with the field are obvious.

A word on terminology: in common with ECMA 167, this document will use shall to
indicate a mandatory action or requirement, may to indicate an optional action or
requirement, and should to indicate a preferred, but still optional action or requirement.

Also, specia comments associated with fields and/or structures are prefaced by the
notification: " NOTE:"

9DF 2.01 March 15, 2000
UDF2.00 Aprit-3-1998

1.2 Compliance

This document requires conformance to parts 1, 2, 3 and 4 of ECMA 167. Compliance to
part 5 of ECMA 167 is not supported by this document. Part 5 may be supported in a
later revision of this document.

For an implementation to claim compliance to this document the implementation shall
meet all the requirements (indicated by the word shall) specified in this document.

The following are a few points of clarification in regards to compliance:

* Multi-Volume support is optional. An implementation can claim compliance
and only support single volumes.

* Multi-Partition support is optional. Animplementation can claim compliance
without supporting the special multi-partition case on a single volume defined
in this specification.

» Media support. Animplementation can claim compliance and support asingle
media type or any combination. All implementations should be able to read
any mediathat is physically accessible.

* Multisession support. Any implementation that supports reading of CD-R
media shall support reading of CD-R Multisessions as defined in 6.10.3.

» File Name Trandation - Any time an implementation has the need to transform
afilename to meet operating system restrictions it shall use the algorithms
specified in this document.

» Extended Attributes - All compliant implementations shall preserve existing
extended attributes encountered on the media. Implementations shall create
and maintain the extended attributes for the operating systems they support.
For example, an implementation that supports Macintosh shall preserve any
0S/2 extended attributes encountered on the media. An implementation that
supports Macintosh shall also create and maintain all Macintosh extended
attributes specified in this document.

» Backwards Read Compatibility — A-An implementation compliant UB=2.00
Hplementationto this version of the UDF specification shall be able to read
al media written under UBF1.50-and-1.02previous versions of the UDF
specification.

» Backwards Write Compatibility — UDF 2.000x structures shall not be written
to media whichcontainsthat contain UDF 1.50 or UDF 1.02 structures. UDF
1.50 and UDF 1.02 structures shall not be written to media which-contains
UDBE2.00that contain UDF 2.0x structures. These two requirements prevent
media from containing different versions of the UDF structures.

1.3 General References

1.3.1 References
SO 9660:1988 Information Processing - Volume and File Structure of CD-ROM for
Information Interchange

QDF 2.01 March 15, 2000
J
UDF2.00 Apri-3-1998

IEC 908:1987 Compact disc digital audio system

ISO/IEC 10149:1993 Information technology - Data Interchange on read-only 120mm optical data
discs (CD-ROM based on the Philips/Sony “Y ellow Book™)

Orange Book part-I1 Recordable Compact Disc System Part-11, N.V. Philips and Sony Corporation
Orange Book part-11l Recordable Compact Disc System Part-111, N.V. Philips and Sony Corporation

ISO/IEC 13346:1995 Volume and file structure of write-once and rewritable media using non-
sequential recording for information interchange. This1SO standard is
equivalent to ECMA 167 2™ edition..

ECMA 167 ECMA 167 3 edition is an update to ECMA 167 2™ edition that adds the
support for multiple data stream files, and is available from http://mwww.ecma.ch. |
The previous edition of ECMA 167 (2") wasis equivalent to ISO/IEC
13346:1995. References enclosed in [] in this document are referencesto
ECMA 167 3% edition. Thereferencesarein the form [x/ab.c], wherex isthe
section number and a.b.c is the paragraph or figure number.

1.3.2 Definitions

Audio session Audio session contains one or more audio tracks, and no data track. |

Audio track Audio tracks are tracks that are designated to contain audio sectors specified in
|SO/IEC 908.

CD-R CD-Recordable. A write once CD defined in Orange Book, part-11.

CD-RW CD-Rewritable. An overwritable CD defined in Orange Book, part-111. |

Clean File System The file system on the media conforms to this specification.

Data track Data tracks are tracks that are designated to contain data sectors specified in
ISO/IEC 10149.

Dirty File System A file system that is not a clean file system.

Fixed Packet An incremental recording method in which al packetsin agiven track are of a

length specified in the Track Descriptor Block. Addresses presented to a CD
drive are trandated according to the Method 2 addressing specified in Orange
Book parts-1l and -111.

ICB A control nodein ECMA 167.
Logical Block Address A logical block number [3/8.8.1].

NOTE 1: Thisisnot to be confused with alogical block address[4/7.1], given
by the Ib_addr structure which contains both alogical block number [3/8.8.1]
and a partition reference number [3/8.8], the latter identifying the partition
[3/8.7] which contains the addressed logical block [3/8.8.1].

NOTE 2: A logical block number [3/8.8.1] trandates to alogical sector number
[3/8.1.2] according to the scheme indicated by the partition map [3/10.7] of the
partition [3/8.7}], which contains the addressed logical block [3/8.8.1]

Media Block Address A sector number [3/8.1.1], derived from the unique sector address given by a
relevant standard for recording [1/5.10]. In this specification, a sector number
[3/8.1.1] isequivalent to alogical sector number [3/8.1.2].

MrDF 2.01 March 15, 2000
UDF2.00 Aprit-3-1998

Packet

Physical Address

Physical Block Address

physical sector

A recordable unit, which is an integer number of contiguous sectors[1/5.9],
which consist of user data sectors, and may include additional sectors[1/5.9]
which are recorded as overhead of the Packet-writing operation and are
addressable according to the relevant standard for recording [1/5.10].

A sector number [3/8.1.1], derived from the unique sector address given by a
relevant standard for recording [1/5.10]. In this specification, a sector number
[3/8.1.1] isequivalent to alogical sector number [3/8.1.2].

A sector number [3/8.1.1], derived from the unique sector address given by a
relevant standard for recording [1/5.10]. In this specification, a sector number
[3/8.1.1] isequivalent to alogical sector number [3/8.1.2].

A sector [1/5.9] given by arelevant standard for recording [1/5.10]. In this
specification, a sector [1/5.9] isequivalent to aalogical sector [3/8.1.2].

Random Access File System A file system for randomly writable media, either write once or

Sequential File System
Session

Track

UDF

user data blocks

user data sectors

EDF 2.01
I

rewritable
A file system for sequentially written media (e.g. CD-R)

The tracks of a volume shall be organized into one or more sessions as specified
by the Orange Book part-11. A session shall be a sequence of one or more tracks,
the track numbers of which form a contiguous ascending sequence.

The sectors of a volume shall be organized into one or moretracks. A track
shall be a sequence of sectors, the sector numbers of which form a contiguous
ascending sequence. No sector shall belong to more than one track.

Note: There may be gaps between tracks; that is, the last sector of a track need
not be adjacent to the first sector of the next track.

OSTA Universal Disk Format

Thelogical blocks[3/8.8.1] which were recorded in the sectors [1/5.9]
(equivalent in this specification to logical sectors[3/8.1.2]) of a Packet and
which contain the data intentionally recorded by the user of the drive. This
specifically does not include the logical blocks[3/8.8.1], if any, whose
congtituent sectors[1/5.9] were used for the overhead of recording the Packet,
even though those sectors [1/5.9] are addressable according to the relevant
standard for recording [1/5.10]. Likeany logical blocks[3/8.8.1], user data
blocks are identified by logical block numbers[3/8.8.1].

The sectors [1/5.9] of a Packet which contain the data intentionally recorded by
the user of the drive, specifically not including those sectors [1/5.9] used for the
overhead of recording the Packet, even though those sectors [1/5.9] may be
addressable according to the relevant standard for recording [1/5.10]. Like any
sectors[1/5.9], user data sectors are identified by sector numbers[3/8.1.1]. In
this specification, a sector number [3/8.1.1] is equivalent to aalogical sector
number [3/8.1.2].

March 15, 2000

UBbF200
tH 0

Variable Packet

Virtual Address

virtual partition

An incremental recording method in which each packet in a given track is of a
host determined length. Addresses presented to a CD drive are as specified in
Method 1 addressing in Orange Book parts|l and I11.

A logical block number [3/8.8.1] of alogical block [3/8.8.1] in avirtual
partition. Such alogical block [3/8.8.1] is recorded using the space of alogical
block [3/8.8.1] of a corresponding non-virtual partition. The Nth Uint32 in the
VAT representsthe logical block number [3/8.8.1] in a non-virtual partition
used to record logical block number N of its corresponding virtual partition. The
first virtual addressisO.

A partition of alogical volume[3/8.8] identified in alogical volume descriptor
[3/10.6] by a Type 2 partition map [3/10.7.3] recorded according section 2.2.8 of
to this specification. Thevirtual partition map contains a partition number
which- that isthe same as the partition number [3/10.7.2.4] in a Type 1 partition
map [3/10.7.2] in the same logical volume descriptor [3/10.6]. Each logical
block [3/8.8.1] in the virtual partition is recorded using the space of alogical
block [3/8.8.1] of that corresponding non-virtual partition. A VAT liststhe
logical blocks [3/8.8.1] of the non-virtual partition, which have been used to
record the logical blocks [3/8.8.1] of its corresponding virtual partition.

virtual sector A logical block [3/8.8.1] in avirtual partition. Such alogical block [3/8.8.1] is
recorded using the space of alogical block [3/8.8.1] of a corresponding non-
virtual partition. A virtual sector should not be confused with a sector [1/5.9] or
alogical sector [3/8.1.2].

VAT A file[4/8.8] recorded in the space of a non-virtual partition which hasa
corresponding virtual partition, and whose data space [4/8.8.2] is structured
according to section 2.2.10 of this specification. Thisfile provides an ordered list
of Uint32s, where the Nth Uint32 represents the logical block number [3/8.8.1]
of anon-virtual partition used to record logical block number N of its
corresponding virtual partition. Thisfile[4/8.8] isnot necessarily referenced by
afileidentifier descriptor [4/14.4] of adirectory [4/8.6] in the file set [4/8.5] of
the logical volume [3/8.8].

VAT ICB A File Entry ICB that describes a file containing a Virtual Allocation Table.

1.3.3 Terms

May Indicates an action or feature that is optional.

Optional Describes a feature that may or may not be implemented. 1f implemented, the
feature shall be implemented as described.

Shall Indicates an action or feature that is mandatory and must be implemented to
claim compliance to this standard.

Should Indicates an action or feature that is optional, but itsimplementation is strongly
recommended.

Reserved A reserved field is reserved for future use and shall be set to zero. A reserved
valueisreserved for future use and shall not be used.

gDF 2.01 March 15, 2000

UBbF200
tH 0

1.3.4 Acronyms

Acronym Definition
AD Allocation Descriptor
AVDP Anchor Volume Descriptor Pointer
EA Extended Attribute
EFE Extended File Entry
FE File Entry
FID File Identifier Descriptor
FSD File Set Descriptor
ICB I nformation Control Block
IlUVD | mplementation Use V olume Descriptor
LV Logical Volume
LVD Logica Volume Descriptor
LVID Logical Volume Integrity Descriptor
PD Partition Descriptor
PVD Primary Volume Descriptor
usb Unallocated Space Descriptor
VAT Virtual Allocation Table
VDS Volume Descriptor Sequence
VRS V olume Recognition Sequence
?DF 2.01 March 15, 2000

UDE2 00
==

Apri-3,1093

2. Basic Restrictions & Requirements

The following table summarizes several of the basic restrictions and requirements defined
in this specification. These restrictions & requirements as well as additional ones are
described in detail in the following sections of this specification.

ltem

Restrictions & Requirements

Logical Sector Size

The Logical Sector Sze for a specific volume shall be the
same as the physical sector size of the specific volume.

Logical Block Size

The Logical Block Sze for aLogical Volume shall be set to
the logical sector size of the volume or volume set on
which the specific logical volume resides.

Volume Sets

All mediawithin the same Volume Set shall have the same
physical sector size. Rewritable/Overwritable media and
WORM media shall not be mixed in/ be present in the
same volume set.

First 32K of Volume Space

Thefirst 32768 bytes of the Volume space shall not be used
for the recording of ECMA 167 structures. Thisarea shall
not be referenced by the Unallocated Space Descriptor or
any other ECMA 167 descriptor. Thisisintended for use
by the native operating system.

Volume Recognition Sequence

The Volume Recognition Sequence as described in part 2
of ECMA 167 shall be recorded.

Timestamp

All timestamps shall berecorded in local time. Time zones
shall be recorded on operating systems that support the
concept of atime zone.

Entity Identifiers

Entity Identifiers shall be recorded in accordance with this
document. Unless otherwise specified in this specification
the Entity Identifiers shall contain a value that uniquely
identifies the implementation.

Descriptor CRCs

CRCs shall be supported and calculated for all Descriptors,
except for the Space Bitmap Descriptor.

File Name Length

Maximum of 255 bytes

Maximum-PathsizeExtent Length

Maximum Extent Length shall be 2°° — 1 rounded down to

the nearest integral multiple of 1023-bytesthe L ogical
Block Size. Maximum Extent Length for extentsin virtual

space shall bethe Logical Block Size.

Extent-LengthPrimary Volume Descriptor

Maxirmurm-Extent Length-shal-be 2*°—Logical Block-Size-
. : o
betheLogical-Block-Size. There shall be exactly one

prevailing Primary Volume Descriptor recorded per
volume. The media where the VolumeSequenceNumber of
this descriptor is equal to 1 (one) must be part of the logical
volume defined by the prevailing Logical Volume
Descriptor.

PrirmaryAnchor Volume Descriptor_Pointer

Descripterrecorded-pervelume:Shall be recorded in at
least 2 of the following 3 locations:. 256, N-256, or N,
where N is the last addressable sector of a volume. See also
2.2.3.

Anehor\olumePartition Descriptor-Peinter

: S TRT— P

March 15, 2000

9DF 2.01
A =4

UBF200
==

Aprit-3,1998

SN aa Nara N\

avolumeA Partition Descriptor Access Type of Read-
Only, Rewritable, Overwritable and WORM shall be
supported.

There shall be exactly one prevailing Partition Descriptor
recorded per volume, with one exception. For Volume Sets
that consist of single volume, the volume may contain 2
Partitions with 2 prevailing Partition Descriptors only if
one has an access type of read only and the other has an
access type of Rewritable, Overwritable, or WORM. The
Logical Volume for this volume would consist of the
contents of both partitions.

PartittonLogical Volume Descriptor

Volume Set.

The Logical Volumel dentifier field shall not be null and
should contain an identifier that aids in the identification of
the logical volume. Specifically, software generating
volumes conforming to this specification shall not set this
field to afixed or trivial value. Duplicate disks, which are
intended to be identical, may contain the same valuein this
field. Thisfield is extremely important in logical volume
identification when multiple media are present within a
jukebox. This nameistypically what is displayed to the
user.

The Logical VolumeDescriptor recorded on the volume
where the PrimaryVolumeDescriptor’s
VolumeSequenceNumber field is equal to 1 (one) must have
a Number of PartitionMaps value and PartitionMaps
structure(s) that represent the entire logical volume. For
example, if avolume set is extended by adding partitions,
then the updated Logical VolumeDescriptor written to the
last volumein the set must also be written (or rewritten) to
thefirst volume of the set.

gDF 2.01

March 15, 2000

UDE2 00
== 0d

Apri-3,1093

Logical Volume Integrity Descriptor

Shall be recorded. The extent of LVIDs may be terminated
by the extent length.

Unallocated Space Descriptor

A single prevailing Unallocated Space Descriptor shall be
recorded per volume.

File Set Descriptor

There shall be exactly one File Set Descriptor recorded per
Logical Volume on Rewritable/Overwritable media. For
WORM media multiple File Set Descriptors may be
recorded based upon certain restrictions defined in this
document lheHLeSeHelenﬂ#eHreLeLeHheFﬂeset

232 for-further-detatts: The FSD extent may be
terminated by the extent length.

ICB Tag

Only strategy types 4 or 4096 shall be recorded. |

File Identifier Descriptor

Thetotal length of a File Identifier Descriptor shall not
exceed the size of one Logical Block.

File Entry

Thetotal length of a File Entry shall not exceed the size of
one Logical Block.

Allocation Descriptors

Only Short and Long Allocation Descriptors shall be
recorded.

Allocation Extent Descriptors

Thelength of any single AHecation-Extent
Deseriptorextent of allocation descriptors shall not exceed
the Logical Block Sze.

Unallocated Space Entry

Thetotal length of an Unallocated Space Entry shall not |
exceed the size of one Logical Block.

Space Bitmap Descriptor

CRC not required.

Partition Integrity Entry

Shall not be recorded.

Volume Descriptor Sequence Extent

Both the main and reserve volume descriptor sequence |
extents shall each have a minimum length of 16 logical
sectors. The VDS Extent may be terminated by the extent
length.

Record Structure

Record structure files, as defined in part 5 of ECMA 167,
shall not be created.

QRF 2.01

March 15, 2000

UDF200

Aprit-3,1998

2.1 Part1- General

211

QI?LF 2.01

Character Sets
The character set used by UDF for the structures defined in this document is the
CS0 character set. The OSTA CS0 character set is defined as follows:

OSTA CS0 shall consist of the d-characters specified in the The Unicode Standard, |
Version 2.0 (ISBN 0-201-48345-9 from Addison-Wesley Publishing Company
http://www.awl.com/devpress , see also
httpAwwartnicade-orghttp://www.unicode.org), excluding #FEFF and FFFE,
stored in the OSTA Compressed Unicode format which is defined as follows:

OSTA Compressed Unicode for mat

RBP | Length Name Contents
0 1 Compression ID Uint8
1 7?2 | Compressed Bit Stream byteByte |

The CompressionI D shall identify the compression algorithm used to compress the
CompressedBitSream field. The following agorithms are currently supported:

Compression Algorithm

Value Description
0-7 Reserved
8 Value indicates there are 8 hits per character
in the CompressedBitStream.
9-15 Reserved
16 Value indicates there are 16 bits per character
in the CompressedBitStream.

17-253 | Reserved

254 Value indicates therethe CS0 expansion is
aempty and unique-4-byte binary-number
felowing.. Compression Algorithm 8 is used
for compression.
255 Value indicates therethe CS0 expansion is
aempty and unique-8-byte binary-number
felowing.. Compression Algorithm 16 is
used for compression.

For a CompressionI D of 8 or 16, the value of the CompressionID shall specify the
number of BitsPerCharacter for the d-characters defined in the
CharacterBitStream field. Each sequence of CompressionID bitsin the
CharacterBitStream field shall represent an OSTA Compressed Unicode d-
character. The bits of the character being encoded shall be added to the
CharacterBitStream from most- to least-significant-bit. The bits shall be added to

March 15, 2000

UBbF200
tH 0

the CharacterBitStream starting from the most- significant- hit of the -current byte |
being encoded into.
NOTE: Thisencoding causes characters written with a Compressioni D of 16 to

be effectively written in big endian format.

The value of the OSTA Compressed Unicode d-character interpreted as a Uint16
defines the value of the corresponding d-character in the Unicode 2.0 standard.
Refer to appendix on OSTA Compressed Unicode for sample C source code to
convert between OSTA Compressed Unicode and standard Unicode 2.0.

The Unicode byte-order marks, #FEFF and #FFFE, shall not be used.

Compression IDs 254 and 255 shall only be used in FIDs where the deleted bit is

set to ONE.

When uncompressing file identifiers with Compression |Ds 254 and 255, the
resulting name is to be considered empty and unique.

2.1.2 OSTA CS0 Char spec

struct charspec { [* ECMA 167 1/7.2.1*/
Uint8 Character SetType;
byte Character SetInfo[63];
}
The Character SetType field shall have the value of 0 to indicate the CSO coded
character set.

The Character SetInfo field shall contain the following byte values with the
remainder of the field set to avalue of 0.

HAF, #53, #54, #41, #20, #43, #6F, #6D, #70, #72, #65, #73, #73, #65,
#64, #20, #55, #OE, #69, #63, #6F, #64, #65

The above byte values represent the following ASCII string:
“OSTA Compressed Unicode’

2.1.3 Dstrings
The ECMA 167 standard, as well as this document, has normally defined byte positions
relativeto 0. Insection 7.2.12 of -ECMA 167, dstrings are defined in terms of being

YbF 2.01 March 15, 2000
BF2:00 AprH-3-1998

relativeto 1. Since this offers an opportunity for confusion, the following shows what the
definition would be if described relative to 0.

7.2.12 Fixed-length character fields

A dstring of length nisafield of n bytes where d-characters (1/7.2) are recorded. The number of
bytes used to record the characters shall berecorded as a Uint8 (1/7.1.1) in byte n-1, wherenis
the length of the field. The characters shall be recorded starting with the first byte of the field,
and any remaining byte positions after the characters up until byte n-2 inclusive shall be set to
#00.

If the number of d-characters to be encoded is zero, the length of the dstring shall be zero.
NOTE: The length of a dstring includes the compression code byte (2.1.1) except for the
case of azero length string. A zero length string shall be recorded by setting the entire
dstring field to all zeros.

2.1.4 Timestamp

struct timestamp { I* ECMA 167 1/7.3*/
Uint16 TypeAndTimezone;
Uint16 Y ear;
Uint8 Month;
Uint8 Day;
Uint8 Hour;
Uint8 Minute;
Uint8 Second;
Uint8 Centiseconds;,
Uint8 HundredsofMicroseconds;
Uint8 Microseconds;
}

2.1.4.1 Uint16 TypeAndTimezone;
For the following descriptions Type refers to the most significant 4 bits of this
field, and TimeZone refersto the least significant 12 bits of thisfield, which is
interpreted as a signed 12-bit number in two’s complement form.

&~ Thetime within the structure shall be interpreted as Local Time since Type
shall be equal to ONE for OSTA UDF compliant media.

& Type shall be set to ONE to indicate Local Time.
& ShallTimeZone shall be interpreted as specifying the time zone -for the

location when this field was last modified. If this field contains -2047 then
the time zone has not been specified.

& For operating systems that support the concept of atime zone, the offset of
the time zone (in 1 minute increments), from Coordinated Universal Time,

YhaF 2.01 March 15, 2000
ey
UDF2.00 Apri-3-1998

shal be inserted in thisthe TimeZone field. Otherwise the tire zene pertion
of-thisfieldTimeZone shall be set to -—2047.

Note: Time zones West of Coordinated Universal Time have negative offsets.
For example, Eastern Standard Time is -300 minutes; Eastern Daylight
Timeis -240 minutes.

Note: Implementations on systems that support time zones should interpret

unspecified time zones as Coordinated Universal Time. Although not a

requirement, this interpretation has the advantage that files generated on

systems that do not support time zones will always appear to have the same

time stamps on systems that do support time zones, irrespective of the

interpreting system's local time zone.

2.1.5 Entity Identifier

struct EntitylD { [* ECMA 167 1/7.4*/
Uint8 Flags,
char I dentifier[23];
char | dentifier Suffix[8];

}

UDF classifies Entity Identifiersinto 34 separate types as follows:

Domain Entity Identifiers

UDF Entity Identifiers

Implementation Entity Identifiers

Application Entity Identifiers |

The following sections describes the format and use of Entity Identifiers based |
upon the different types mentioned above.

2.1.5.1 Uint8 Flags
& Self--explanatory.

V-1 Shall be set to ZERO.

2.1.5.2 char Identifier
Unless stated otherwise in this document this field shall be set to an identifier that
uniquely identifies the implementation. This methodology will allow for
identification of the implementation responsible for creating structures recorded on
media interchanged between different implementations.

kJﬂ_BrF 2.01

March 15, 2000

UDE2 00
==

Apri-3,1093

If an implementation updates existing structures on the media written by other
implementations the updating implementation shall set the Identifier field to a
value that uniquely identifies the updating implementation.

The following table summarizes the Entity Identifier fields defined in the ECMA
167 standard and this document and shows to what values they shall be set.

Entity |dentifiers

Descriptor Field ID Value Suffix Type
Primary Volume Implementation ID “*Developer ID” Implementation
Descriptor Identifier Suffix
hplementation hplementation “*DeveloperAppli | HmplementationApplica
UsePrimary Volume | HBApplication ID cation ID” tion ldentifier Suffix
Descriptor
Implementation Use | Implementation “*UDF LV Info” UDF Identifier Suffix

VVolume Descriptor

Identifier

Implementation Use

Implementation 1D

“*Developer ID”

Implementation

Volume Descriptor

(in Implementation

Usefield)

Identifier Suffix

Partition Descriptor Implementation ID “*Developer ID” Implementation
I dentifier Suffix
Partition Descriptor Partition Contents “+NSR03” Application Identifier
Suffix
Logical Volume Implementation ID “*Developer ID” Implementation
Descriptor Identifier Suffix
Logical Volume Domain ID "*OSTA UDF DOMAIN Identifier
Descriptor Compliant" Suffix
File Set Descriptor Domain ID "*OSTA UDF DOMAIN Identifier
Compliant" Suffix
File Identifier Implementation “*Developer ID” Implementation
Descriptor 1BUse Identifier Suffix
(optional)
File Entry Implementation ID “*Developer ID” Implementation
I dentifier Suffix
Adtribute
Device Specification | Implementation 1D “*Developer ID” Implementation
Extended Attribute Identifier Suffix
LegiealMolume Implementation 1D “=Developer HaplementatronUDE
FAategrrey 152See 3345 Identifier Suffix
DeseripterUDF

Implementation Use
Extended Attribute

Non-UDF
Implementation Use
Extended Attribute

Implementation 1D

“*Developer ID”

Implementation

Identifier Suffix

UDF Application Use

Application ID

Extended Attribute

Se3.3.4.6

UDF ldentifier Suffix

March 15, 2000

I:Jﬂ_BF 2.01

UBF200
==

Aprit-3,1998

Non-UDF Application ID “*Application ID” | Application |dentifier
Application Use Suffix
Extended Attribute
UDF Unique ID Implementation ID “*Developer ID” Implementation
Mapping Data Identifier Suffix
Power Calibration Implementation ID “*Developer ID” Implementation
Table Stream Identifier Suffix
Logical Volume Implementation ID “*Developer ID” Implementation
Integrity Descriptor (in Implementation Identifier Suffix
Usefield)
Partition Integrity Implementation ID N/A N/A
Entry
Virtual Partition Map | Partition Type “*UDF Virtua UDF ldentifier Suffix
Identifier Partition”
Virtual Allocation Implementation Use | “ *Developer ID” Implementation
Table Identifier Suffix
(optional)
Sparable Partition Partition Type “*UDF Sparable UDF Identifier Suffix
Map Identifier Partition”
Table Aloc b
Sparing Table Sparing ldentifier “*UDF Sparing UDF Identifier Suffix
Table’

NOTE: The value of the Entity Identifier field is interpreted as a sequence
of bytes, and not as a dstring specified in CS0. For ease of use the values
used by UDF for thisfield are specified in terms of ASCII character strings.
The actual sequence of bytes used for the Entity Identifiers defined by UDF

are specified in the-appendixsection 6.2.

NOTE: Inthe ID Value column in the above table “* Beveloper Application
ID” -refersto aan identifier that uniquely identifies the writer’s application.

In the ID Value column in the above table “ * Developer ID” refersto an Entity |dentifier

that uniquely identifies the current implementation. The value specified should be used
when anew descriptor is created. Also, the value specified should be used for an existing
descriptor when anything within the scope of the specified Entityl D field is modified.

9_@: 2.01

NOTE: The value chosen for a“ *Developer ID” should contain enough
information to identify the company and product name for an implementation. For
example, acompany called XYZ with a UDF product called DataOne might choose
“*XYZ DataOne” astheir developer ID. Also in the suffix of their developer ID
they may choose to record the current version number of their DataOne product.
Thisinformation is extremely helpful when trying to determine which
implementation wrote a bad structure on a piece of media when multiple products
from different companies have been recording on the media

March 15, 2000

UBF200
==

Aprit-3,1998

The Suffix Type column in the above table defines the format of the suffix to be used with
the corresponding Entity Identifier. These different suffix types are defined in the

following paragraphs.

NOTE: All Identifiers defined in this document (appendix 6.1) shall be registered

by OSTA as UDF Identifiers.

2.1.5.3 ldentifier Suffix
The format of the Identifier Suffix field is dependent on the type of the Identifier.

Q?F 2.01

In regard to OSTA Domain Entity Identifiers specified in this document (appendix
6.1) the Identifier Suffix field shall be constructed as follows:

Domain | dentifier Suffix field format

RBP | Length Name Contents
0 2 UDF Revision uintl6 (=
#0200)0201)
2 1 Domain Flags uint8
3 5 Reserved bytes (= #00)

The UDFRevision field shall contain #92020201 to indicate revision 2.0201 of this |
document. This field will allow an implementation to detect changes made in
newer revisions of this document. The OSTA Domain Identifiers are only used in
the Logica Volume Descriptor and the File Set Descriptor. The DomainFlags
field defines the following bit flags:

Domain Flags

Bit

Description

0 Hard Write-Protect

1 Soft Write-Protect

2-7 Reserved

The SoftWriteProtect flag is a user settable flag that indicates that the volume or
file system structures within the scope of the descriptor in which it resides are
write protected. A SoftWriteProtect flag value of ONE shall indicate user write
protected structures. This flag may be set or reset by the user. The
HardWriteProtect flag is an implementation settable flag that indicates that the
scope of the descriptor in which it resides is permanently write protected. A
HardWriteProtect flag value of ONE shall indicate a permanently write protected
structure. Once set this flag shall not bereset. The HardWriteProtect flag
overrides the SoftWriteProtect flag.

The write protect flags appear in the Logical VVolume Descriptor and in the File Set
Descriptor. They shall be interpreted as follows:

March 15, 2000

UBbF200
tH 0

NOTE: It isimportant to understand the intended use and importance of the OS Class and

is_fileset_write_protected = LVD.HardWriteProtect || LV D.SoftWriteProtect ||

FSD.HardWriteProtect || FSD.SoftWriteProtect
is fileset_hard_protected = LV D.HardWriteProtect || FSD.HardWriteProtect

is fileset_soft_protected = (LVD.SoftWriteProtect || FSD.SoftWriteProtect) & &

("is_vol_hard_protected)
is_vol_write_protected = LVD.HardWriteProtect || LV D.SoftWriteProtect
is vol_hard_protected = LV D.HardWriteProtect
is_vol_soft_protected = LVD.SoftWriteProtect && 'LV D.HardWriteProtect

Implementation use Entity Identifiers defined by UDF (appendix 6.0) the
| dentifier Suffix field shall be constructed as follows:

UDF I dentifier Suffix

RBP | Length Name Contents
0 2 UDF Revision uintl6 (=
#0200)0201)
2 1 OSClass uint8
3 1 OS Identifier Uint8
4 4 Reserved bytes (= #00)

The contents of the OS Class and OS |dentifier fields are described in the
Appendix on Operating System Identifiers.

For implementation use Entity Identifiers not defined by UDF the I dentifier Suffix

field shall be constructed as follows:

| mplementation | dentifier Suffix

RBP | Length Name Contents
0 1 OS Class Uint8
1 1 OS Identifier uint8
2 6 Implementation Use Area bytes

OS ldentifier fields. The main purpose of these fieldsisto aid in debugging when
problems are found on a UDF volume. The fields also provide useful information

whichthat could be provided to the end user. When set correctly these two fields provide

an implementation with information such as the following:

QBF 2.01

* |dentify under which operating system a particular structure was last modified.

» ldentify under which operating system a specific file or directory was last

modified.

» |If adeveloper supports multiple operating systems with their implementation, it

helps to determine under which operating system a problem may have

occurred.

March 15, 2000

UBbF200
tH 0

For an Application Entity Identifier not defined by UDF, the I dentifier Suffix field
shall be constructed as follows, unless specified otherwise.

Application | dentifier Suffix

RBP Length Name Contents

0 8 Implementation Use Area bytes

2.1.6 Descriptor Tag Serial Number at Formatting Time

In order to support disaster recovery, the TagSerialNumber value of all UDF descriptors
that will be recorded at formatting time, shall be set to avalue that differs from ones
previousdy recorded, upon volume re-initialization.

If no disaster recovery will be supported, a value zero (#0000) shall be used for the
TagSerialNumber field of all UDF descriptors that will be recorded at formatting time, see
ECMA 3/7.2.5 and 4/7.2.5.

If disaster recovery is supported, the value to be used depends on the state of the volume
prior to formatting. There are only two states in which a volume can be formatted such
that disaster recovery will be possible in the future. These states are:

1) Thevolume is completely erased. Only after this action, and where disaster recovery is
to be supported then a value of one (#0001) shall be used as the TagSerial Number
value.

2) Thevolumeisaclean UDF volume that supports disaster recovery for
TagSerialNumber values, and the TagSerialNumber values of at least two Anchor
Volume Descriptor Pointers are both equal to X, where X isnot equal to zero. |If
disaster recovery isto be supported then a value X+1 shall be used asthe
TagSerialNumber value. |f X+1 wrapsto zero then keep it as zero to indicate that
disaster recovery is not supported.

NOTE: Thereason for thisisthat if X+1 wrapsto zero then the unigueness of any
TagSeriadNumber value unegual to zero can no longer be guaranteed on the volume.

NOTE: By ‘erased’ in the above paragraphs, we mean that the sectors are made non-valid
for UDF —for example by writing zeroes to the sectors.

2.1.7 Volume Recognition Sequence
The following rules shall apply when writing the volume recognition sequence:

qigF 2.01 March 15, 2000
UDF2.00 Aprit-3.1998

The Volume Recognition Sequence (VRS) as described in part 2 and part 3 of

ECMA 167 shall be recorded. There shall be exactly one NSR descriptor in the
VRS. The NSR and BOOT 2 descriptors shall be in the Extended Area. There shall
be only one Extended Areawith one BEAOL and one TEAQL. All other VSDs are
only allowed before the Extended Area. The block after the VRS shall be
unrecorded or contain all #00.

I mplementers should expect that disks recorded by UDF 2.00 and earlier did not

QQF 2.01

have this constraint, and should handle these cases accordingly.

March 15, 2000

UDE2 00
== 0d

Apri-3,1093

2.2 Part 3-Volume Structure
2.2.1 Descriptor Tag

struct tag { [* ECMA 167 3/7.2*/
Uint16 Tagldentifier;
uUint16 DescriptorVersion;
uint8 TagChecksum;
byte Reserved,
Uint16 TagSerialNumber;
uint16 DescriptorCRC;
Uint16 Descriptor CRCLength;
Uint32 TagL ocation,

}

2.2.1.1 Uint16 TagSerialNumber
&~ lgnored. Intended for disaster recovery.

& ——ReShadll be set to a-uniguethe TagSerialNumber value at—velume
maitialization-of the Anchor Volume Descriptor Pointers on this volume.

The FagSertatNumber
In order to preserve disaster recovery support, the TagSerial Number-shalt must be
set to avalue that differs from ones previously recorded, upon volume re-

initialization. -HThis value is suggested-that:-TagSerialNumber=
{FragSeriatNumber-of-the-Primary-Volume Descriptor)+determined at volume
formatting time and may depend on the state of the volume prior to formatting.
See 2.1}-.6 for further details.

2.2.1.2 Uint16 Descriptor CRCLength
CRCs shall be supported and calculated for each descriptor. The value of thisfield
shall be set to (Size of the Descriptor) - (Length of Descriptor Tag). When
reading a descriptor the CRC should be validated.

NOTE: The Descriptor CRCLength field must not be used to determine the actual
length of the descriptor or the number of bytes to read. These lengths do not
match in all cases; there are exceptions in the standard where the Descriptor CRC
Length need not match the length of the descriptor.

9RF 2.01 March 15, 2000
UDF2.00 April-3-1998

2.2.2 Primary Volume Descriptor

struct PrimaryV olumeDescriptor { [* ECMA 167 3/10.1*/
struct tag DescriptorTag;
Uint32 V olumeDescriptor SequenceNumber;
Uint32 PrimaryV olumeDescriptorNumber;
dstring Volumel dentifier[32];
Uint16 V olumeSequenceNumber;
Uint16 MaximumV olumeSequenceNumber;
Uint16 I nterchangel evel;
Uint16 M aximumlnterchangelL evel;
Uint32 Character SetList;
Uint32 MaximumCharacter SetList;
dstring VolumeSetl dentifier[128];

struct charspec Descriptor Character Set;
struct charspec ExplanatoryCharacter Set;
struct extent_ ad VolumeAbstract;

struct extent_ad VolumeCopyrightNotice;
struct EntityID Applicationldentifier;
struct timestamp RecordingDateandTime;
struct EntitylD Implementationl dentifier;

byte ImplementationUse[64];

Uint32 PredecessorV olumeDescriptor Sequencel ocation;
Uint16 Flags;

byte Reserved[22];

}

2.2.2.1 Uintl6 Interchangel evel
&~ Interpreted as specifying the current interchange level (as specified in |
ECMA 167 3/11), of the contents of the associated volume and the
restrictions implied by the specified level.

& If this volume is part of a multi-volume Volume Set then the level shall be
set to 3, otherwise the level shall be set to 2.

ECMA 167 requires an implementation to enforce the restrictions associated with
the specified current Interchange Level. The implementation may change the
value of thisfield aslong as it does not exceed the value of the Maximum
Interchange Level field.

2.2.2.2 Uint16 -Maximuml nter changel evel
&~ Interpreted as specifying the maximum interchange level (as specified in
ECMA 167 3/11), of the contents of the associated volume.

& This field shall be set to level 3 (No Restrictions Apply), unless specifically
given adifferent value by the user.

9bF 2.01 March 15, 2000
UDF2.00 Apri-3-1998

NOTE: This field is used to determine the intent of the originator of the volume.
If this field has been set to 2 then the originator does not wish the volume to be
included in a multi-volume set (interchange level 3). The receiver may override
this field and set it to a 3 but the implementation should give the receiver a strict
warning explaining the intent of the originator of the volume.

2.2.2.3 Uint32 -Character SetL ist

&

&

Interpreted as specifying the character set(s) in use by any of the structures
defined in Part 3 of ECMA 167 (3/10.1.9).

Shall be set to indicate support for CSO only as defined in 2.1.2.

2.2.2.4 Uint32 -MaximumChar acter SetL ist

&

&

Interpreted as specifying the maximum supported character sets (as
specified in ECMA 167) which may be specified in the Character SetList
field.

Shall be set to indicate support for CSO only as defined in 2.1.2.

2.2.2.5 dstring VolumeSetldentifier

&

&

Interpreted as specifying the identifier for the volume set .

The first 16 characters of this field should be set to a unique value. The
remainder of the field may be set to any allowed value. Specifically,
software generating volumes conforming to this specification shall not set
this field to a fixed or trivial value. Duplicate disks which are intended to
be identical may contain the same value in this field.

NOTE: The intended purpose of this is to guarantee Volume Sets with
unigue identifiers. The first 8 characters of the unique part should come
from a CSO hexadecimal representation of a 32-bit time value. The
remaining 8 characters are free for implementation use.

2.2.2.6 struct charspec Descriptor Character Set

&

&

Interpreted as specifying the character sets alowed in the Volume
Identifier and Volume Set | dentifier fields.

Shall be set to indicate support for CSO as defined in 2.1.2.

2.2.2.7 struct charspec ExplanatoryCharacter Set

&

QQF 2.01

Interpreted as specifying the character sets used to interpret the contents of
the VolumeAbstract and VolumeCopyrightNotice extents.

March 15, 2000

UBbF200
tH 0

& Shall be set to indicate support for CS0O as defined in 2.1.2.

2.2.2.8 struct EntitylD Implementationl dentifier;
For more information on the proper handling of this field see section 2.1.5.

2.2.2.9 struct EntitylD Applicationl dentifier
s Thisfield either specifies a valid Entity Identifier (section 2.1.5) identifying
the application that last wrote this field, or the field is filled with all #00
bytes, meaning that no application is identified.

& Either all #00 bytes or a valid Entity Identifier (section 2.1.5) shall be
recorded in this field.

2.2.3 Anchor Volume Descriptor Pointer
struct AnchorV olumeDescriptorPointer { [* ECMA 167 3/10.2 */
struct tag DescriptorTag;
struct extent_ad M ainVolumeDescriptor SequenceExtent;
struct extent_ad ReserveVolumeDescriptor SequenceExtent;
byte Reserved[480];
}

NOTE: An AnchorVolumeDescriptorPointer structure shall be recorded in at least
2 of the following 3 locations on the media: |

* Logica Sector 256.
* Logica Sector (N - 256).
* N

NOTEUnelosedNOTE: As specified in section 6.10, unclosed CD-R media may
have a single AVDP present at either sector 256 or 512. If on an Archer\olume
Deseripter—Peinterunclosed disc a single AVDP is recorded at—only-sector 512
Upen-elese,on sector 256, any AVDP recorded on sector 512 must be ignored.
Closed CD-R media vw#!tshall conform to the above rules-sbove-.

2.2.3.1 struct MainVolumeDescriptor SequenceExtent
The main VolumeDescriptor SequenceExtent shall have a minimum length of 16
logical sectors.

2.2.3.2 struct ReserveVolumeDescriptor SequenceExtent
The reserve VolumeDescriptor SequenceExtent shall have a minimum length of 16
logical sectors.

9QF 2.01 March 15, 2000
UDF2.00 April-3-1998

2.2.4 Logical Volume Descriptor

struct LogicaVolumeDescriptor { [* ECMA 167 3/10.6 */
struct tag DescriptorTag;
Uint32 V olumeDescriptor SequenceNumber;
struct charspec Descriptor Character Set;
dstring LogicalVVolumel dentifier[128];
Uint32 L ogicalBlockSize,
struct EntitylD ~ Domainldentifier;
byte L ogicalVVolumeContentsUse{ 16];
Uint32 MapTableL ength;
Uint32 NumberofPartitionM aps,
struct EntitylD Implementationl dentifier;
byte ImplementationUse[128];
extent_ad I ntegritySequenceExtent,
byte PartitionM apq];

}

2.2.4.1 struct charspec Descriptor Character Set
&~ Interpreted as specifying the character set alowed in the
LogicalVolumel dentifier field.

& Shall be set to indicate support for CSO as defined in 2.1.2.

2.2.4.2 Uint32 LogicalBlockSize
&~ Interpreted as specifying the Logical Block Size for the logica volume |
identified by this Logical VolumeDescriptor.

& This field shall be set to the largest logical sector size encountered amongst
all the partitions on media that constitute the logical volume identified by |
this LogicalVolumeDescriptor. Since UDF requires that al Volumes
within a VolumeSet have the same logical sector size, the Logical Block
Sze will be the same as the logical sector size of the Volume.

2.2.4.3 struct EntitylD Domainl dentifier
&~ Interpreted as specifying a domain specifying rules on the use of, and
restrictions on, certain fields in the descriptors. If this field is all zero then
it isignored, otherwise the Entity Identifier rules are followed. NOTE: If
the field does not contan “*OSTA UDF Compliant” then an
implementation may deny the user access to the logical volume. |

& This field shall indicate that the contents of this logical volume conformsto |
the domain defined in this document, therefore the Domainldentifier shall
be st to:
"*OSTA UDF Compliant"

oeF 2.01 March 15, 2000
—_J
UDF 200 April-3-1998

As described in the section on Entity Identifier the Identifier Suffix field of
this EntitylD shal contain the revision of this document for which the
contents of the Logical Volume is compatible. For more information on
the proper handling of this field see section 2.1.5.

NOTE: The IdentifierSuffix field of this EntityID contains
SoftWriteProtect and HardWriteProtect flags. Refer to 2.1.45.3.

2.2.4.4 byte LogicalVolumeContentUse[16]

This field contains the extent location of the FileSet Descriptor. Thisis described in 4/3.1
of ECMA 167 asfollows:

This filed can be used to find the FileSet descriptor, and from the FileSet descriptor the

“If the volume is recorded according to Part Errerl-Reference sourcenot-found.3, the extent
in which the first File Set Descriptor Sequence of the logical volume is recorded shall be
identified by a long_ad (Er+erl-Reference-souree-notfound/Errer-Reference-souree-not
found-4/14.14.2) recorded in the Logical Volume Contents Use field (see Er+orl-Reference
sodree—hot—found/ErrorReference—soureenet—found-3/10.6.7) of the Logical Volume

Descriptor describing the logical volume in which the File Set Descriptors are recorded.”

root volume can be found.

2.2.4.5 struct EntitylD Implementationl dentifier;

For more information on the proper handling of this field see the section en-Entity

Identifier2.1.5.

2.2.4.6 struct extent_ad |ntegritySequenceExtent

A valuein thisfield isrequired for the Logical Volume Integrity Descriptor. For
Rewriteable or Overwriteable media this shal be set to a minimum of 8K bytes.

WARNING: For WORM media this field should be set to an extent of some

substantial length. Once the WORM volume on which the Logical Volume

Integrity Descriptor residesis full a new volume must be added to the volume set
since the Logical Volume Integrity Descriptor must reside on the same volume as

the prevailing Logical Volume Descriptor.

2.2.4.7 byte PartitionM aps

QQF 2.01

For the purpose of interchange partition maps shall be limited to Partition Map
type 1, except type 2 maps as described in this document (2.2.8 and 2.2.9).

March 15, 2000

UBbF200
tH 0

2.2.5 Unallocated Space Descriptor

struct UnallocatedSpaceDesc { [* ECMA 167 3/10.8 */
struct tag DescriptorTag;
Uint32 V olumeDescriptor SequenceNumber;
Uint32 NumberofAllocationDescriptors,
extent_ad AllocationDescriptord];
}

This descriptor shall be recorded, even if there is no free volume space._ The first
32768 bytes of the Volume space shall not be used for the recording of ECMA
167 structures. This area shall not be referenced by the Unallocated Space
Descriptor or any other ECMA 167 descriptor.

2.2.6 Logical Volume Integrity Descriptor

struct LogicaVolumel ntegrityDesc { I* ECMA 167 3/10.10 */
struct tag DescriptorTag,
Timestamp RecordingDateAndTime,
Uint32 IntegrityType,
struct extend_ad NextIntegrityExtent,
byte L ogicalVVolumeContentsUse[32],
Uint32 NumberOfPartitions,
Uint32 LengthOfl mplementationUse,
Uint32 FreeSpaceTable[],
Uint32 SizeTabl€],
byte ImplementationUse{]
}

The Logical Volume Integrity Descriptor is a structure that shall be written any
time the contents of the associated Logical Volume is modified. Through the
contents of the Logical Volume Integrity Descriptor an implementation can easily
answer the following useful questions:

1) Arethe contents of the Logical Volume in a consistent state?

2) When was the last date and time that anything within the Logical
V olume was modified?

3) What isthe total Logical Volume free space in logical blocks?
4) What isthe total size of the Logical Volume in logical blocks?

5) What is the next available Uniquel D for use within the Logical Volume?

9bF 2.01 March 15, 2000
UDF2.00 Apri-3-1998

6) Has some other implementation modified the contents of the logical
volume since the last time that the original implementation, which crested
the logical volume, accessed it.

2.2.6.1 byte-LogicalVolumeContentsUse
See the section on-Logical-Veolume Header Descriptor3.2.1 for information on the

contents of this field.

2.2.6.2 Uint32 -FreeSpaceT able |
Since most operating systems require that an implementation provide the true free
gpace of aLogical Volume at mount time it isimportant that these values be |
maintained for all non-virtual partitions. The optional value of #FFFFFFFF, which
indicates that the amount of available free space is not known, shall not be used for |
non-virtual partitions. For virtual partitions the FreeSpaceT able shall be set to
#FFFFFFFF.

NOTE: The FreeSpaceTable is guaranteed to be correct only when the Logical
Volume Integrity Descriptor is closed.

2.2.6.3 Uint32 SizeTable
Since most operating systems require that an implementation provide the total size
of aLogica Volume at mount time it isimportant that these values be maintained
for al non-virtual partitions. The optional value of #FFFFFFFF, which indicates
that the partition size is not known, shall not be used for non-virtual partitions.
For virtual partitions the SizeTable shall be set to #FFFFFFFF.

2.2.6.4 byte ImplementationUse
The ImplementationUse area for the Logical Volume Integrity Descriptor shall be
structured as follows:

| mplementationUse format

RBP | Length Name Contents

0 32 Implementationl D EntitylD

32 4 Number of Files Uint32

36 4 Number of Directories Uint32

40 2 Minimum UDF Read Revision Uintl6

42 2 Minimum UDF Write Revision Uint16

44 2 Maximum UDF Write Revision Uintl6

46 7? Implementation Use byte

Implementation ID - The implementation identifier EntitylD of the
implementation which last modified anything within the scope of this
EntitylD. The scope of this EntitylD is the Logical Volume Descriptor, and
the contents of the associated Logical Volume. Thisfield alows an

9aF 2.01 March 15, 2000
[y
UDF2.00 Apri-3-1998

implementation to identify which implementation last modified the contents
of aLogica Volume.

Number of Files - The current number of files in the associated Logical
Volume. This information is needed by the Macintosh OS. All
implementations shall maintain this information. NOTE: This value does
not include Extended Attributes or streams or streams as part of the file |
count.

Number of Directories - The current number of directories in the
associated Logical Volume. This information is needed by the Macintosh
OS. All implementations shall maintain this information.

NOTE: The root directory shal be included in the directory count. The
directory count does not include stream directories. |

Minimum UDF Read Revision - Shall indicate the minimum recommended
revison of the UDF specification that an implementation is required to
support to successfully be able to read al potential structures on the media.
This number shall be stored in binary coded decimal format, for example
#0150 would indicate revision 1.50 of the UDF specification.

Minimum UDF Write Revision - Shall indicate the minimum revision of the
UDF specification that an implementation is required to support to
successfully be able to modify all structures on the media. This number
shall be stored in binary coded decimal format, for example #0150 would
indicate revision 1.50 of the UDF specification.

Maximum UDF Write Revision - Shall indicate the maximum revision of
the UDF specification that an implementation whichthat has modified the |
media has supported. An implementation shall update this field only if it
has modified the media and the level of the UDF specification it supportsis
higher than the current value of this field. This number shall be stored in
binary coded decimal format, for example #0150 would indicate revision
1.50 of the UDF specification.

Implementation Use - Contains implementation specific information unique
to the implementation identified by the Implementation ID.

9QF 2.01 March 15, 2000
—_J
UDF2.00 Apri-3-1998

2.2.7 Implemention Use Volume Descriptor

struct ImpUseV olumeDescriptor { [* ECMA 167 3/10.4 */
struct tag DescriptorTag;
Uint32 V olumeDescriptor SequenceNumber;
struct EntitylD Implementationl dentifier;
byte I mplementationUse[460];
}

This section defines an UDF Implementation Use Volume Descriptor. This
descriptor shall be recorded on every Volume of a Volume Set. The Volume may
also contain additional |mplementation Use Volume Descriptors which that are |
implementation specific. The intended purpose of this descriptor isto aid in the
identification of a VVolume within a Volume Set that belongs to a specific Logical
Volume.

NOTE: Animplementation may still record an additional Implementation Use
Volume Descriptor in its own format on the media. The UDF Implementation Use
Volume Descriptor does not preclude an additional descriptor.

2.2.7.1 Entityl D tmplementation] mplementationl dentifier

The Identifier
Thisfield of this Entityl D shall specify “*UDF LV Info”._Refer to section 2.1.5 on
Entity Identifier.

2.2.7.2 bytes I mplementation-Use
The implementation use area shall contain the following structure:

struct LVInformation {
struct charspec LVICharset,

dstring L ogicalVVolumel dentifier[128],
dstring LVInfol[36],

dstring LVInfo2[36],

dstring LVInfo3[36],

sruct EntitylD tmplementiontBlmplementation| D,
bytes I mplementationUse[128];

}
2.2.7.2.1 charspec LVICharset
& Interpreted as specifying the character sets adlowed in the
Logical Volumeldentifier and LVInfo fields.

& Shall be set to indicate support for CSO only as defined in 2.1.2. ‘

QpF 2.01 March 15, 2000
I
UDF2.00 Apri-3-1998

2.2.7.2.2 dstring LogicalVolumel dentifier
| dentifies the Logical Volume referenced by this descriptor.

2.2.7.2.3 dstring LVInfol,LVInfo2 and LVInfo3 |
ThefieldsLVInfol, LVInfo2 and LV Info3 should contain additional information
to aid in the identification of the media. For example the LVInfo fields could
contain information such as Owner Name, Organization Name, -and Contact |
Information.

2.2.7.2.4 druct Entityl D tmplementiontBlmplementationl D
Refer to the section 2.1.5 on Entity Identifier.

2.2.7.2.5 bytesImplementationUse[128]
This area may be used by the implementation to store any additional
implementation specific information.

QaF 2.01 March 15, 2000
A
UDF2.00 April-3,1998

2.2.8 Virtual Partition Map
Thisis an extension of ECMA 167 to expand its scope to include sequentially written
media (eg. CD-R). Thisextension isfor a partition map entry to describe a virtual space.

The Logical Volume Descriptor contains alist of partitions that make up a given volume.
Asthe virtual partition cannot be described in the same manner as a physical partition, a
Type 2 partition map defined below shall be used.

If aVirtual Partition Map is recorded, then the Logical Volume Descriptor shall contain at
least two partition maps. One partition map shall be recorded as a Type 1 partition map.
One partition map shall be recorded as a Type 2 partition map. The format of this Type 2
partition map shall be as specified in the following table.

Layout of Type 2 partition map for virtual partition

RBP | Length Name Contents
0 1 Partition Map Type uint8 = 2

1 1 Partition Map Length uint8 = 64

2 2 Reserved #00 bytes

4 32 Partition Type Identifier EntitylD

36 2 Volume Sequence Number uint16

38 2 Partition Number uintl6

40 24 Reserved #00 bytes

e Partition Type Identifier:
e Flags=0
e ldentifier =*UDF Virtual Partition
e ldentifierSuffix isrecorded asin section 2.1.5.3
* Volume Segquence Number = volume upon which the VAT and Partition is recorded

e Partition Number = the partition number in the Type 1 partition map in the same logical
volume descriptor.

2.2.9 Sparable Partition Map

Certain disk/drive systems do not perform defect management (eg. CD-RW). To provide
an apparent defect-free space for these systems, a partition of type 2 isused. The partition
map defines the partition number, packet size (see section 1.3.2), and size and locations of
the sparing tables. Thistype 2 map isintended to replace the type 1 map normally found
on the media. FhismapThere should not be atype 1 map recorded if a Sparable Partition
Map is recorded. The Sparable Partition Map identifies not only the partition number and
the volume sequence number, but also identifies the packet length and the sparing tables.

SQF 2.01 March 15, 2000
UDF2.00 Apri-3-1998

A Sparable Partition Map shall not be recorded on disk/drive systems that perform defect

management.
L ayout of Type 2 partition map for sparable partition
RBP Length Name Contents
0 1 Partition Map Type uint8 = 2
1 1 Partition Map Length Uint8 = 64
2 2 Reserved #00 bytes
4 32 Partition Type Identifier EntitylD
36 2 Volume Seguence Number uintl6
38 2 Partition Number uintl6
40 2 Packet Length Uint16 =232
42 1 Number of Sparing Tables (=N_ST) Uint8
43 1 Reserved #00 byte
44 4 Size of each sparing table Uint32
48 4* N_ST Locations of sparing tables Uint32
48+4* N ST|16-4* N ST | Pad #00 bytes

Partition Type Identifier:
e Flags=0
e ldentifier =*UDF Sparable Partition
e ldentifierSuffix isrecorded asin section 2.1.5.3.

Partition Number = the number of this partition. Shall identify a Partition Descriptor
associated with this partition.

Packet Length = the number of user data blocks per fixed packet. Shat-besette-22This
valueis specified in the medium specific section of Appendix 6.

Number of Sparing Tables = the number of redundant tables recorded. This shall be avalue
in therange of 1 to 4.

Size of each sparing table = Length, in bytes, allocated for each sparing table.

Locations of sparing tables = the start locations of each sparing table specified as a media
block address. Implementations should align the start of each sparing table with the
beginning of a packet. |mplementations should record at least two sparing tablesin
physically distant locations.

2.2.10 Virtual Allocation Table

The Virtual Allocation Table (VAT) is used on sequentialy written media (eg. CD-R) to
give the appearance of randomly writable media to the system. The existence of this
partition is identified in the partition maps. The VAT shall only be recorded on
sequentially written media (eg. CD-R).

The VAT isamap that trandates Virtual Addresses to logical addresses. It shall be
recorded as afile identified by a File Entry ICB (VAT ICB) whichthat allows great
flexibility in building the table. The VAT ICB is the last sector recorded in any transaction.
The VAT itself may be recorded at any location.

ORF 2.01

March 15, 2000

O
UBbF200
tH 0

The VAT shall be identified by a File Entry ICB with afile type of 248. ThisICB shall be
the last valid data sector recorded. Error recovery schemes can find the last valid VAT by
finding ICBs with file type 248.

This file, when small, can be embedded in the ICB that describesit. If it islarger, it can be
recorded in a sector or sectors preceding the ICB. The sectors do not have to be
contiguous, which allows writing only new parts of the table if desired. This allows small
incremental updates, even on disks with many directories.

When the VAT is small (a small number of directories on the disk), the VAT is updated by
writing a new file ICB with the VAT embedded. When the VAT becomes too large to fit
in the ICB, writing a single sector with the VAT and a second sector with the ICB is
required. Beyond this point, more than one sector is required for the VAT. However, as
multiple extents are supported, updating the VAT may consist of writing only the sector
or sectors that need updating and writing the ICB with pointers to all of the pieces of the
VAT.

The Virtual Allocation Table is used to redirect requests for certain information to the
proper logical location. The indirection provided by this table provides the appearance of
direct overwrite capability. For example, the ICB describing the root directory could be
referenced as virtual sector 1. A virtual sector is contained in a partition identified by a
virtual partition map entry. Over the course of updating the disk, the root directory may
change. When it changes, a new sector describing the root directory iswritten, and its
Logica Block Addressis recorded as the Logica Block Address corresponding to virtual
sector 1. Nothing that references virtual sector 1 needsto change, asit till pointsto the
most current virtual sector 1 that exists, even though it exists at anew Logical Block
Address.

The use of virtual addressing allows any desired structure to become effectively
rewritable. The structure is rewritable when every pointer that references it does so only
by its Virtual Address. When a replacement structure is written, the virtual reference does
not need to change. The proper entry inthe VAT is changed to reflect the new Logical
Block Address of the corresponding Virtual Address and all virtual references then
indirectly point to the new structure. All structures that require updating, such as directory
|CBs, shall be referenced by a Virtual Address. As each structure is updated, its
corresponding entry in the VAT ICB shall be updated.

The VAT shall be recorded as a sequence of Uint32 entries in afile. Each entry shall be
the offset, in sectors, into the physical partition in which the VAT islocated. The first
entry shall be for the virtual partition sector O, the second entry for virtual partition sector
1, etc. The Uint32 entries shall follow the VAT header. The entry for the previous VAT
|CB allows for viewing the file system as it appeared in an earlier state. If thisfield is
#FFFFFFFF, then no such ICB is specified.

QYF 2.01 March 15, 2000
A=
UDF 2,00 April-3,1998

Virtual Allocation Table structure

Offset Length Name Contents
0 2 Length of Header (=L_HD) Uint16
2 2 Length of Implementation Use (=L_1U) Uint16
4 128 Logical Volume Identifier dstring
132 4 Previous VAT ICB location Uint32
136 4 Number of FiBsdentifying Files Uint32
140 4 Number of nen-parentFHBsidentifying Uint32

Directories

144 2 MinMinimum UDF Read versienVersion Uint16
146 2 MinMinimum UDF Write versienV ersion Uint16
148 2 MaxMaximum UDF Write verssonVersion | Uintl6
150 2 Reserved #00 bytes
152 L IU Implementation Use bytes
152+L 1U |4 VAT entry O Uint32
156+L I1U |4 VAT entry 1 Uint32
Information | 4 VAT entry n uint32
Length - 4 |

Length of Header - Indicates the amount of data preceding the VAT entries. Thisvaue
shall be 152 + L_|U.

Length of Implementation Use - Shall specify the number of bytes in the Implementation
Usefield. If thisfield is non-zero, the value shall be at least 32 and be an integral multiple
of 4.

Logical Volume Identifier - Shall identify the logical volume. This field shall be used by |
implementations instead of the corresponding field in the Logica Volume Descriptor. The
value of this field should be the same as the field in the LVD until changed by the user.

Previous VAT ICB Location - Shall specify the logical block number of an earlier VAT
ICB in the partition identified by the partition map entry. If thisfield is #FFFFFFFF, no |
such ICB is specified.

Number of FiDstdentifyingFiles —tdentifiesthe— The current number of files er-in the
assomated Logical Volume This mformatlon IS n%ded bv theVGJere%eLHd’ng*}aFd

thisﬂekiMacmtosh OS AII |mplementat|ons shall malntam this mformatlon The
contents of this field shall be used by implementations asteadinstead of the corresponding
fieldinthe LVID.

g9gF 201 March 15, 2000
UDF200 Apri-3-1998

NOTE: This value does not include Extended Attributes or streams as part of the

corresponding field in the LVIDfile count.

Number of ren-parent-FDstdentifying-Directories - HdentifiestheThe current number of
directories enin the velume—plusassociated Logical Volume. This information is needed
by the Macintosh OS. All implementations shall maintain this information. The contents of
this field shall be used by implementations instead of the corresponding field in the LVID.

NOTE The root dlrectory—'Fhe shall be included in the dlrectorv countﬁle&enet

dlrectorv count does not include stream dlrectorles

MiaMinimum UDF Read Version - Defined in 2.2.6. The contents of this field shall be
used by implementations instead of the corresponding field in the Logical Volume

Inegritylntegrity Descriptor (LVID).

MiaMinimum UDF Write Version - Defined in 2.2.6. The contents of this field shall be
used by implementations instead of the corresponding field inthe LVID.

MaxMaximum UDF Write Version - Defined in 2.2.6. The contents of this field shall be
used by implementations instead of the corresponding field inthe LVID.

Implementation Use - If non-zero in length, shall begin with aan Entity-1D identifying the
usage of the remainder of the Implementation Use area.

VAT Entry - VAT entry n shall identify the logical block number of the virtual block n.
An entry of #FFFFFFFF indicates that the virtual sector is currently unused. The LBN
specified is located in the partition identified by the partition map entry. The number of
entries in the table can be determined from the VAT file sizein the I CB:

Number of entries (N) = (Information Length - L_HD) / 4.

2.2.11 Sparing Table

Certain disk/drive systems do not perform defect management (eg. CD-RW). -Fe-A
Sparing Table is used to provide an apparent defect-free space for these systems. Certain
media can only be written in groups of sectors (“packets’), further complicating
relocation: awhole packet must be relocated rather than only the sectors being written.
To address thisissue a sparable partition is identified in the partition map, which further
identifies the location of the sparing tables. The sparing table identifies relocated areas on
the media. Sparing tables are identified by a sparable partition map. Sparing tables shall
not be recorded on disk/drive systems that perform defect management.

QEF 2.01 March 15, 2000
UbF2.00 AprH-3-1998

Sparing Tables point to space alocated for sparing and contains alist of mappings of
defective sectors to their replacements. Separate copies of the sparing tables shall be
recorded in separate packets. All instances of the sparing table shall be kept up to date.

Partitions map logical space to physical space. Normally, thisisalinear mapping where an
offset and alength is-are specified. A sparable partition is based on this mapping, where
the offset and length of a partition within physical space is specified by a Partition
Descriptor (see 2.2.12). A sparable partition descriptershall begin and end on a packet

boundary. The sparing table further specifies an exception list of logical to physical
mappings. All mappings are one packet in length. The packet size is specified in the
sparable partition map.

Available sparing areas may be anywhere on the media, either inside or outside of a
partition. If located inside a partition, sparable space shall be marked as allocated and
shall be included in the Non-Allocatable Space ListStream. The mapped locations should
befilled in a format time; the original locations are assigned dynamically as errors occur.
Each sparing table shall be structured as shown below.

Sparing Table layout

BP | Length Name Contents
0 16 Descriptor Tag tag=0
16 32 Sparing ldentifier EntitylD
48 2 Reallocation Table Length (=RT_L) uintl6
50 2 Reserved #00 bytes
52 4 Sequence Number Uint32
56 8*RT_L Map Entry Map Entries

This structure may be larger than a single sector if necessary.
Descriptor Tag
Contains a Tag teentiter-|dentifier of O, which indicates that the format of the Descriptor

Tag isnot specified by ECMA 167. All other fields of the Descriptor Tag shall bevalid, asif

S?F 2.01

the Tag Identifier were one of the values defined by ECMA 167.

Sparing ldentifier:

Flags=0

Identifier = * UDF Sparing Tabl e
IdentifierSuffix isrecorded asin UDF 2.1.5.3

Reallocation Table Length
Indicates the number of entriesin the Map Entry table.

Sequence Number
Contains a number that shall be incremented each time the sparing table is updated.

Map Entry
A map entry is described in the table below. Maps shall be sorted in ascending order by the

Original Location field.

March 15, 2000

UBbF200
tH 0

Map Entry description

RBP | Length Name Contents
0 4 Original Location Uint32
4 4 Mapped Location Uint32

e Original Location
Logical Block Address of the packet to be spared. The address of a packet is the address of
thefirst user data block of a packet. If thisfield is #FFFFFFFF, then thisentry is available
for sparing. If thisfield is #FFFFFFFO, then the corresponding mapped location is marked |
as defective and should not be used for mapping. Original Locations of #FFFFFFFL through
#FFFFFFFE are reserved.

e Mapped Location
Physical Block Address of active data. Requeststo the original packet location are redirected
to the packet location identified here. All Mapped Location entries shall be valid, including
those entries for which the Original Location is #FFFFFFFO, #FFFFFFFF, or reserved. If the
mapped |ocation overlaps a partition, that partition shall have that space marked as all ocated
and that space shall be part of the Non-Allocatable Space !ist-Stream. |

38': 2.01 March 15, 2000
UDF 200 Aprit-3-1998

2.2.12 Partition Descriptor
struct PartitionDescriptor {

[* ECMA 167 3/10.5 */

struct tag DescriptorTag;

Uint32 V olumeDescriptorSequenceNumber;
Uint16 PartitionFlags;

Uint16 PartitionNumber:;

struct EntitylD PartitionContents;

byte PartitionContentsUse[128];;

Uint32 AccessType;

Uint32 PartitionStartingL ocation;
Uint32 PartitionL ength;

struct EntitylD | mplementationl dentifier;
byte | mplementationUse[128] ;

byte Reserved[156];

3

2.2.12.1 Struct Entityl D PartitionContents

For more information on the proper handling of this field see the section on Entity

|dentifier.

2.2.12.2 Uint32 PartitionStartinglL ocation

For a Sparable Partition, the value of this field shall be an integral multiple of the

Packet Length. The Packet Length is defined in the Sparable Partition Map.

2.2.12.3 Uint32 PartitionL ength

For a Sparable Partition, the value of this field shall be an integral multiple of the

Packet Length. The Packet Length is defined in the Sparable Partition Map.

2.2.12.4 Struct Entityl D | mplementationl dentifier

For more information on the proper handling of this field see the section on Entity

|dentifier.

gg: 2.01

March 15, 2000

UDE2 00
==

Apri-3,1093

2.3 Part 4 - File System

2.3.1 Descriptor Tag

struct tag {
uint16
uint16
Uint8
byte
Uint16
Uint16
Uint16
uint32

}

[* ECMA 167 4/7.2*/
Tagldentifier;
DescriptorVersion;
TagChecksum;
Reserved,;
TagSerialNumber;
DescriptorCRC;
Descriptor CRCLength;
TagL ocation;

2.3.1.1 Uint16 -TagSerialNumber
&~ lgnored. Intended for disaster recovery.

y3 ReShall be set to a-uniguethe TagSerialNumber value at-for the Anchor
Volume Descriptor Pointers on this volume-nitialization.

The IagSeHaLNHmbngame apph&s as for volume structure TagSerial NumbershaH

mmbe%&&m%h&asseerated—F#e%et—D&s%p&ervalues seeZleanleG

2.3.1.2 Uint16 Descriptor CRCLength
CRCs shall be supported and calculated for each descriptor, unless otherwise
noted. The value of thisfield shall be set to: (Size of the Descriptor) - (Length of
Descriptor Tag). When reading a descriptor the CRC should be validated.

NOTE: The Descriptor CRCLength field must not be used to determine the actual

length of the descriptor or the number of bytesto read. These lengths do not

match in all cases; there are exceptions in the standard where the Descriptor CRC

Length need not match the length of the descriptor.

2.3.1.3 Uint32 TagL ocation

For structures referenced via a virtual address (i.e. referenced through the VAT),

this value shall be the virtual address, not the physical or logical address.

L_4r€F 2.01

March 15, 2000

UDE2 00
==

Apri-3,1093

2.3.2 File Set Descriptor

struct FileSetDescriptor { /* ECMA 167 4/14.1*/

}

struct tag DescriptorTag;

struct timestamp RecordingDateandTime;
Uint16 I nterchangel evel;

Uint16 M aximumlnterchangelL evel;
Uint32 Character SetList;

Uint32 M aximumCharacter SetList;
Uint32 FileSetNumber;

Uint32 FileSetDescriptorNumber;

struct charspec
dstring
struct charspec

L ogicalVVolumel dentifier Character Set;
LogicaVolumel dentifier[128];
FileSetCharacter Set;

dstring FileSetldentifer[32];
dstring CopyrightFilel dentifier[32];
dstring AbstractFilel dentifier[32];
struct long_ad RootDirectoryl CB,;

struct EntitylD Domainldentifier;

struct long_ad NextExtent;

struct long_ad StreamDirectoryl CB;

byte Reserved[32];

Only one FileSet descriptor shall be recorded. On WORM media, multiple

FileSets may be recorded.

The UDF provision for multiple File Setsis as follows:

* Multiple FileSets are only allowed on WORM media.

* Thedefault FileSet shall be the one with the highest FileSetNumber.

* Only the default FileSet may be flagged as writable. All other FileSets
in the sequence shall be flagged HardWriteProtect (see EntityiB
defintton2.1.5.3).

* No writable FileSet shall reference any metadata structures which are
referenced (directly or indirectly) by any other FileSet. Writable
FileSets may, however, reference the actual file data extents.

Within aFileSet on WORM, if al files and directories have been recorded with
|CB strategy type 4, then the DomainID of the corresponding FileSet Descriptor
shall be marked as HardWriteProtected.

The intended purpose of multiple FileSets on WORM isto support the ability to
have multiple archive images on the media. For example one FileSet could
represent a backup of a certain set of information made at a specific point in time.

March 15, 2000

grl_al_F 2.01

UBbF200
tH 0

The next FileSet could represent another backup of the same set of information
made at alater point in time.

2.3.2.1 Uint16 -Interchangel evel
&~ Interpreted as specifying the current interchange level (as specified in
ECMA 167 4/15), of the contents of the associated file set and the
restrictions implied by the specified level.

a1 Shall be set to alevel of 3.

An implementation shall enforce the restrictions associated with the specified
current Interchange Level.

2.3.2.2 Uint16 -Maximuml nter changel evel
& Interpreted as specifying the maximum interchange level of the contents of
the associated file set. This value restricts to what the current Interchange
Level field may be set.

& Shall be set to level 3.

2.3.2.3 Uint32 -Character SetL ist
e~ Interpreted as specifying the character set(s) specified by any field, whose
contents are specified to be a charspec, of any descriptor specified in Part 4
of ECMA 167 and recorded in the file set described by this descriptor.

& Shall be set to indicate support for CSO only as defined in 2.1.2.
2.3.2.4 Uint32 -MaximumChar acter SetL ist
&~ Interpreted as specifying the maximum supported character set in the
associated file set and the restrictions implied by the specified level.
& Shall be set to indicate support for CSO only as defined in 2.1.2.
2.3.2.5 struct charspec L ogical Volumel dentifier Char acter Set
&~ Interpreted as specifying the d-characters alowed in the Logical Volume
Identifier field.

& Shall be set to indicate support for CSO as defined in 2.1.2.
2.3.2.6 struct charspec FileSetChar acter Set
& Interpreted as specifying the d-characters allowed in dstring fields defined
in Part 4 of ECMA 167 that are within the scope of the FileSetDescriptor.

& Shall be set to indicate support for CSO as defined in 2.1.2.

YoF 2.01 March 15, 2000
UDF2.00 Apri-3-1998

2.3.2.7 struct EntitylD Domainl dentifier

2.3.3

& Interpreted as specifying a domain specifying rules on the use of, and
restrictions on, certain fields in the descriptors. If thisfield isNULL then it
isignored, otherwise the Entity Identifier rules are followed.

& Thisfield shall indicate that the scope of this File Set Descriptor conforms
to the domain defined in this document, therefore -the
I mplementationl dentifier shall be set to:
"*OSTA UDF Compliant"

As described in the section on Entity Identifier the Identifier Suffix field of
this EntitylD shal contain the revision of this document for which the
contents of the Logical Volume is compatible. For more information on
the proper handling of this field see the section en-Entity-tdentifier2.1.5.3.

NOTE: The IdentifierSuffix field of this EntityID contains
SoftWriteProtect and HardWriteProtect flags.

Partition Header Descriptor
struct PartitionHeaderDescriptor { [* ECMA 167 4/14.3 */
struct short_ad UnallocatedSpaceT able;
struct short_ad UnallocatedSpaceBitmap;
struct short_ad PartitionlntegrityTable;
struct short_ad FreedSpaceTable;
struct short_ad FreedSpaceBitmap;
byte Reserved[88];
}

As a point of clarification the logical blocks represented as Unallocated are blocks
that are ready to be written without any preprocessing. In the case of Rewritable
media this would be a write without an erase pass. The logical blocks represented
as Freed are blocks that are not ready to be written, and require some form of
preprocessing. In the case of Rewritable media this would be a write with an erase
pass.

NOTE: The use of Space Tables or Space Bitmaps shall be consistent across a
Logical Volume. Space Tables and Space Bitmaps shall not both be used at the
same time within a Logical Volume.

2.3.3.1 struct short_ad PartitionIntegrityTable

grgF 2.01

Shall be set to all zeros since Partitionl ntegrityEntrys are not used.

March 15, 2000

UBbF200
tH 0

2.3.4 Fileldentifier Descriptor

struct FileldentifierDescriptor { [* ECMA 167 4/14.4 %/
struct tag DescriptorTag;
Uint16 FileVersonNumber;
uint8 FileCharacteristics;
uint8 LengthofFilel dentifier;
struct long_ad ICB;
Uint16 LengthOflmplementationUsg;
byte ImplementationUsg{];
char Filel dentifier[];
byte Padding[];
}
The File Identifier Descriptor shall be restricted to the length of at most one |
Logical Block.

NOTE: All UDF directories shall include a File Identifier Descriptor that indicates
the location of the parent directory. The File Identifier Descriptor describing the
parent directory shall be the first File Identifier Descriptor recorded in the
directory. The parent directory of the Root directory shall be Root, as stated in
ECMA 167 4/8.6

2.3.4.1 Uint16 FileVersionNumber
& There shall be only one version of afile as specified below with the value
being set to 1.

s Shall be set to 1.

2.3.4.2 FileCharacteristics
The deleted bit may be used to mark afile or directory as deleted instead of
removing the FID from the directory, which requires rewriting the directory from
that point to the end. If the space for the file or directory is deallocated, the
implementation shall set the ICB field to zero, as all fieldsin a FID must be valid
even if the deleted bit isset. See [4/14.4.3], note 21 and [4/14.4.5].

WRAF 2.01 March 15, 2000
UDF2.00 April-3-1998

ECMA 167 4/8.6 requires that the File Identifiers (and File Version Numbers,
which shall aways be 1) of all FIDs in a directory shall be unique. While the
standard is silent on whether FIDs with the deleted bit set are subject to this
requirement, the intent is that they are not. FIDs with the deleted bit set are not
subject to the uniqueness requirement, as interpreted by UDF

In order to assist a UDF implementation that may have read the standard without
this interpretation, implementations shall follow these rules when a FID’ s deleted
bit is set:

If the compression |ID of the File Identifier is 8, rewrite the compression ID to 254.
If the compression ID of the File |dentifier is 16, rewrite the compression ID to
255. Leave the remaining bytes of the File |dentifier unchanged

In this way a utility wishing to undelete afile or directory can recover the original
name by reversing the rewrite of the compression ID.

NOTE: Implementations should re-use FIDs that have the deleted bit set to one
and |CBs set to zero in order to avoid growing the size of the directory

unnecessarily.

2.3.4.3 struct long_ad ICB

The Implementation Use bytes of the long_ad in all File Identifier Descriptors
shall be used to store the UDF Unique ID for the file and directory namespace.

The Implementation Use bytes of along ad hold an ADImpUse structure as
defined by 2.3.10.1. The four impUse bytes of that structure will be interpreted as
aUint32 holding the UDF Unique ID.

ADImpUse structure holding UDF Unique ID

RBP | Length Name Contents

0 2 ReservedFlags (see 2.3.10.1) bytes(=
#00)Uint16

2 4 UDF Unique ID Uint32

Section 3.2.1 Logica Volume Header Descriptor describes how UDF Unique ID
field in Implementation Use bytes of the long_ad in the File | dentifier Descriptor
and the Uniquel D field in the File Entry and Extended File Entry are set.

2.3.4.4 Uint16 -L engthofl mplementationUse

L_4l5F 2.01

&~ Shall specify the length of the ImplementationUse field.

March 15, 2000

UDE2 00
==

Apri-3,1093

& Shall specify the length of the ImplementationUse field. This field may be
ZEROcontain zero, indicating that the ImplementationUse field has not
been used._ Otherwise, this field shall contain at least 32 as required by
2.3.45.

When writing a File Identifier Descriptor to write-once media, to ensure that the
Descriptor Tag field of the next FID will never span a block boundary, if there are
less than 16 bytes remaining in the current block after the FID, the length of the
FID shall be increased (using the Implementation Use field) enough to prevent this.

The LR tengih sy besefo-lesstHhanRemember that in the sizeotbtre =10 mies
16-(to-net-includelatter case, the Implementation Use area)field shall be at least 32

bytes.

2.3.4.5 byte-ImplementationUse
&~ |If the LengthoflmplementationUse field is non ZERO then the first 32
bytes of this field shall be interpreted as specifying the implementation
identifier EntitylD of the implementation which last modified the File
Identifier Descriptor.

& If the Lengthofl mplementationUse field is non ZERO then the first 32
bytes of this field shall be set to the implementation identifier EntitylD of
the current implementation.

NOTE: For additional information on the proper handling of this field refer to the
section on Entity Identifier.

This field allows an implementation to identify which implementation last created
and/or modified a specific File Identifier Descriptor .

2.35 ICB Tag
struct icbtag { [* ECMA 167 4/14.6 */
Uint32 PriorRecordedNumberofDirectEntries,
Uint16 Strategy Type,
byte StrategyParameter|2];
Uint16 NumberofEntries,
byte Reserved;
Uint8 FileType;
Lb_addr Parentl CBL ocation;
Uint16 Flags,
}
L_4r€F 2.01 March 15, 2000

UBF200 Ap;' 31098
== 7

2.3.5.1 Uint16 StrategyType
&~ The contents of this field specifies the ICB strategy type used. For the |
purposes of read access an implementation shall support strategy types 4
and 4096.

& Shall beset to 4 or 4096. |

NOTE: Strategy type 4096, which is defined in the appendix, is intended for
primary use on WORM media, but may also be used on rewritable and
overwritable media

2.3.5.2 Uint8 FileType
As a point efto clarification a value of 5 shal be used for a standard byte
addressable file, not 0. The value of 248 shall be used for the VAT (refer to
2.2.10). The value of 249 shall be used to indicate a Real-Time file (see Appendix
6.11). Values of 250 to 255 shall not be used.

2.3.5.2.1 File Type 249
Files with FileType 249 require special commands to access the data space of this

file. To avoid possible damage, if an implementation does not support these
commands it shall not issue any command that would access or modify the data
space of thisfile. Thisincludes but is not limited to reading, writing and deleting
thefile.

2.3.5.3 Parentl CBL ocation
The use of thisfield is optional.

NOTE: In ECMA 167-4/14.6.7 it statesthat, “If thisfield contains 0, then no such
ICB is specified.” Thisisaflaw inthe {SOECMA standard in that an
implementation could store an ICB at logical block address 0. Therefore, if you
decide to use thisfield, do not store an ICB at logical block address 0.

2.3.5.4 Uint16 Flags
Bits 0-2: These hits specify the type of allocation descriptors used. Refer to the
section on Allocation Descriptors for the guidelines on choosing which type of
allocation descriptor to use.

Bit 3 (Sorted):
¢~ For OSTA UDF compliant media this bit shall indicate (ZERO) that
directories may be unsorted.

V-1 Shall be set to ZERO.

Bit 4 (Non-relocatable):

Yer 2.01 March 15, 2000
UbF2.00 AprH-3-1998

MrBF 2.01

&~ For OSTA UDF compliant media this bit mayshall indicate (ONE) thatif
the file is non-relocatable. Anlf ONE, an implementation may-reset-this bit
shall set the bit to ZERO to—indicatethatthe fileisrelocatable-H-the

plementation-can—net—assure-that-the file-if a modification will ret-be
reloeatedcontravene the definition of this bit in ECMA 167-4/14.6.8.

V-1 Should be set to ZERO- unless required.

NOTE: Thisflag is not alock on the file in any way. It is used to indicate that an
implementation has arranged the allocation of the file to satisfy specific application
requirements. In these cases, any remapping of a written block (see UDF sparable
partitions) or defragmentation of the file might not be desired. If a file with this
flag set to ONE is copied, then the new copy of the file should have this bit set to
ZERO.

Bit 9 (Contiguous):

&~ For OSTA UDF compliant media this bit may indicate (ONE) that the file
is contiguous. An implementation may reset this bit to ZERO to indicate
that the file may be non-contiguous if the implementation can not assure
that the file is contiguous.

& Should be set to ZERO.

Bit 11 (Transformed):

&~ For OSTA UDF compliant mediathis bit shall indicate (ZERO) that no
transformation has taken place.

& Shall be set to ZERO.

The methods used for data compression and other forms of data transformation
might be addressed in afuture OSTA document.

Bit 12 (Multi-versions):
&~ For OSTA UDF compliant media this bit shall indicate (ZERO) that multi-
versioned files are not present.

V-1 Shall be set to ZERO.

March 15, 2000

UDE2 00
==

Apri-3,1093

2.3.6 FileEntry

struct FileEntry { [* ECMA 167 4/14.9*/
struct tag DescriptorTag;
struct icbtag ICBTag;
uint32 vid;
uint32 Gid;
Uint32 Permissions;
Uint16 FileLinkCount;
Uint8 RecordFormat;
Uint8 RecordDisplayAttributes;
Uint32 RecordL ength;
uint64 InformationL ength;
uint64 L ogicalBlocksRecorded;

struct timestamp AccessTime;

struct timestamp ModificationTime;

struct timestamp ~ AttributeTime;

Uint32 Checkpoint;

struct long_ad ExtendedAttributel CB;
struct EntitylD Implementationl dentifier;

Uint64 Uniquel D,

Uint32 LengthofExtendedAttributes;

Uint32 LengthofAllocationDescriptors,

byte ExtendedAttributed[];

byte AllocationDescriptord];
}
NOTE: The total length of a FileEntry shall not exceed the size of one logical
block.

2.3.6.1 Uint8-RecordFormat;
&~ For OSTA UDF compliant media this-bita value of zero shall indicate
{ZERO)-that the structure of the information recorded in the file is not
specified by thisfield.

a1 Shall be set to ZERO.

2.3.6.2 Uint8 -RecordDisplayAttributes;
&~ For OSTA UDF compliant media this-bita value of zero shall indicate
{ZERO)-that the structure of the information recorded in the file is not
specified by thisfield.

a1 Shall be set to ZERO.

YoF 2.01 March 15, 2000
=
UDF2.00 Apri-3-1998

2.3.6.3 Uint8-Uint32 RecordL ength;
&~ For OSTA UDF compliant media this-bita value of zero shall indicate
{ZERO)-that the structure of the information recorded in the file is not
specified by thisfield.

V-1 Shall be set to ZERO.

2.3.6.4 Uint64 Infor mationL ength
In most cases, the InformationLength can be reconstructed during a recovery
operation by finding the sum of the lengths of each of the allocation descriptors.
However, space may be alocated after the end of the file (identified as a “file tail-*}.”).
As allecated-and-“unrecorded and allocated” space isalega part of afile body, using
the allocation descriptors to determine the information length witl-fail-is possible
under the following conditions:

- if the-next-te-tast-an allocation descriptor fer-the file-tdentifies 2230—bloeck-size
leyt%—epemsts with an extent Ienqth that IS not a multlple of the block sze

such extent exists and the extent tvpe of the last allocatlon deecnptor isnot

eontiguouswith-with an extent length unequal to O is not equal to *“unrecorded and
allocated”.

Only the rext-to-lastallecation-deseriptor-last extent of the file body may have an
extent length that is not a multiple of the block size, see ECMA 167 4/12.1 and

4/14.14.1.1.

2.3.6.5 Uint64 L ogicalBlocksRecorded
For files and directories with embedded data the value of this field shall be ZERO.

2.3.6.6 struct EntitylD Implementationl dentifier;
Refer to the section on Entity Identifier.

2.3.6.7 Uint64 -Uniquel D
For the root directory of afile set -this value shall be set to ZERO.

Section 3.2.1 Logical Volume Header Descriptor describes how the UDF Unique
ID field in the Implementation Use bytes of the long_ad in the File | dentifier
Descriptor and the Uniquel D file in the File Entry and Extended File Entry are set.

g2 2.01 March 15, 2000
A
UbF2.00 AprH-3-1998

2.3.7

Unallocated Space Entry

struct UnallocatedSpaceEntry { [* ECMA 167 4/14.11 */
struct tag DescriptorTag;
struct icbtag ICBTag;
Uint32 LengthofAllocationDescriptors,
byte AllocationDescriptorg];
}

NOTE: The maximum length of an UnallocatedSpaceEntry shall be one Logical
Block.

2.3.7.1 byte AllocationDescriptors

5'?..': 2.01

Only Short Allocation Descriptors shall be used.

NOTE: The upper 2 hits of the extent length field in allocation descriptors specify
an extent type (ECMA 167 4/14.14.1.1). For the alocation descriptors specified
for the UnallocatedSpaceEntry the type shall be set to a value of 1 to indicate
extent allocated but not recorded, or shal be set to a value of 3 to indicate the
extent is the next extent of allocation descriptors. This next extent of allocation
descriptors shall be limited to the length of one Logical Block.

AllocationDescriptors shall be ordered sequentially in ascending location order.

No overlapping AllocationDescriptors shall exist in the table. For example,
ad.location = 2, ad.length = 2048 (logical block size = 1024) then nextad.location
= 3isnot allowed. Adjacent AllocationDescriptors shall not be contiguous. For
example ad.location = 2, ad.length = 1024 (logical block size = 1024),
nextad.location = 3 is not allowed and would instead be a single
AllocationDescriptor, ad.location = 2, ad.length = 2048. The only case where
adjacent AllocationDescriptors may be contiguous is when the ad.length of one of
the adjacent AllocationDescriptorsis equal to the maximum AllocationDescriptors
length.

March 15, 2000

UBbF200
tH 0

2.3.8 Space Bitmap Descriptor
struct SpaceBitmap { [* ECMA 167 4/14.1112 */

struct Tag Descriptor Tag;
Uint32 NumberOfBits;
Uint32 NumberOfBytes;
byte Bitmap(];

}

2.3.8.1 struct Tag DescriptorTag
The calculation and maintenance of the Descriptor CRC field of the Descriptor Tag
for the SpaceBitmap descriptor is optional. 1f the CRC is not maintained then both
the Descriptor CRC and Descriptor CRCLength fields shall be ZERO.

2.3.9 Partition Integrity Entry

struct Partitionl ntegrityEntry { [* ECMA 167 4/14.13 */
struct tag DescriptorTag;
struct icbtag ICBTag;
struct timestamp RecordingTime;
uint8 Integrity Type;
byte Reserved[175];
struct EntitylD Implementationl dentifier;
byte I mplementationUse[256];
}

With the functionality of the Logical Volume Integrity Descriptor this descriptor is
not needed, therefore this descriptor shall not be recorded.

2.3.10 Allocation Descriptors
When constructing the data area of a file an implementation has several types of
allocation descriptors from which to choose. The following guidelines shall be
followed in choosing the proper -allocation descriptor to be used:

Short Allocation Descriptor - For aLogical Volume that resides on asingle
Volume with no intent to expand the Logical Volume beyond the single volume
Short Allocation Descriptors should be used. For example a Logical Volume
created for a stand-alone drive.

NOTE: Refer to section 2.2.2.2 on the Maximuml nterchangelLevel.

Long Allocation Descriptor - For aLogical Volume that resides on asingle
Logica Volume with intent to later expand the Logical Volume beyond the single
volume, or aLogical Volume that resides on multiple Volumes Long Allocation
Descriptors should be used. For example aLogical Volume created for a jukebox.

BQF 2.01 March 15, 2000
UDF2.00 Apri-3-1998

NOTE: Thereis abenefit of using Long Allocation Descriptors even on asingle
volume, which is the support of tracking erased extents on rewritable media. See
section 2.3.10.1 for additional information.

For both Short and Long Allocation Descriptors, if the 30 least significant bits of
the ExtentLength field is O, then the 2 most significant bits shall be O.

Allocation Descriptors identifying virtual space shall have an extent length of the
block size or less. Allocation descriptors identifying file data, directories, or

stream data shall identify physical space. ICBsrecorded in virtual space shall use |
long_ad allocation descriptorsto identify physical space. The use of short_ad
allocation descriptors would identify file data in virtual space if the ICB werein
virtual space.

Descriptors recorded in virtual space shall have the virtual logical block number
recorded in the Tag Location field.

2.3.10.1 Long Allocation Descriptor

struct long_ad { [* ECMA 167 4/14.14.2*/
Uint32 ExtentLength;
Lb addr ExtentLocation;
byte I mplementationUse[6];

}

To alow use of the ImplementationUse field by UDF and also by implementations
the following structure shall be recorded within the 6 -byte Implementation Use |
field.

struct ADI nmpUse

Ui ntl6 flags;
byte inpUse[4];

/*

* ADI npUse Fl ags (NOTE: bits 1-15 reserved for future use by
UDF)

*/

#defi ne EXTENTErased (0x01)

In the interests of efficiency on Rewritable media that benefits from preprocessing,
the EXTENTErased flag shall be set to ONE to indicate an erased extent. This
applies only to extents of type not recorded but allocated.

BRF 2.01 March 15, 2000
I
UDF2.00 Apri-3-1998

2.3.11 Allocation Extent Descriptor

struct AllocationExtentDescriptor { [* ECMA 167 4/14.5*/
struct tag DescriptorTag;
Uint32 PreviousAllocationExtentL ocation;
Uint32 LengthOfAllocationDescriptors,

}

The Allocation Extent Descriptor does not contain the Allocation Descriptors

itself. UDF will interpret ECMA 167, 4/14.5 in such a way that the Allocation
Descriptors will start on the first byte following the
LengthOfAllocationDescriptors field of the Allocation Extent Descriptor. The
Allocation Extent Descriptor together with its Allocation Descriptors constitutes
an extent of allocation descriptors. The length of an extent of allocation
descriptors shall not exceed the logical block size. Unused bytes following the
Allocation Descriptorsttill the end of the logical block shall have a value of #00.

2.3.11.1 Struct tag Descriptor Tag
The DescriptorCRCL ength of the DescriptorTag should include the Allocation
Descriptors following the Allocation Extent Descriptor. The
DescriptorCRCL ength shall be either 8 or 8 + LengthOfAllocationDescriptors.

2.3.11.2 Uint32 PreviousAllocationExtentL ocation
&~ The previous alocation extent location shall not be used.

& Shall be set to 0.

BQF 2.01 March 15, 2000
L=
UDF2.00 Apri-3.1998

2.3.12 -Pathname
2.3.12.1 Path Component
struct PathComponent { /* ECMA 167 4/14.16.1 */

Uint8 ComponentType;

Uint8 L engthofComponent| dentifier;
Uint16 ComponentFileVersionNumber;
char Componentldentifier|];

}

2.3.12.1.1 Uint16 -ComponentFileVersionNumber |
&~ There shall be only one version of afile as specified below with the value
being set to ZERO.

a1 Shall be set to ZERO.

2.4 Part 5- Record Structure

Record structure files shall not be created. If they are encountered on the media and they
are not supported by the implementation they shall be treated as an uninterpreted stream |
of bytes.

BBF 2.01 March 15, 2000
UDF 200 April-3-1998

3. System Dependent Requirements

3.1 Part 1- General
3.1.1 Timestamp

struct timestamp { I* ECMA 167 1/7.3*/
uint16 TypeAndTimezone;
Uint16 Y ear;
Uint8 Month;
Uint8 Day;
Uint8 Hour;
Uint8 Minute;
Uint8 Second;
Uint8 Centiseconds;
Uint8 Hundredsof M icroseconds;
Uint8 Microseconds,
}

3.1.1.1 Uint8 Centiseconds;
&~ For operating systems that do not support the concept of
centiseconds the implementation shall ignore this field.

& For operating systems that do not support the concept of
centiseconds the implementation shall set thisfield to ZERO.

3.1.1.2 Uint8 Hundr edsofM icr oseconds;
&~ For operating systems that do not support the concept of hundreds
of Microseconds the implementation shall ignore this field.

& For operating systems that do not support the concept of a
hundreds of Microseconds the implementation shall set thisfield to
ZERO.

3.1.1.3 Uint8 Microseconds;
&~ For operating systems that do not support the concept of
microseconds the implementation shall ignore this field.

& For operating systems that do not support the concept of
microseconds the implementation shall set thisfield to ZERO.

B2RF 2.01 March 15, 2000
I
UDF2.00 Apri-3-1998

3.2 Part 3-Volume Structure

321

L ogical Volume Header Descriptor

struct LogicalVolumeHeaderDesc { I* ECMA 167 4/14.15*/
Uint64 Uniquel D,
bytes reserved| 24]

}

3.2.1.1 Uint64-UniquelD

B?F 2.01

Thisfield contains the next Uniquel D value whichthat should be used. Thefield is
initialized to 16, and it monotonically increases with each assignment described
below. Whenever the lower 32-bits of this value reach #FFFFFFFF, the upper 32-
bits are incremented by 1, as would be expected for a 64-bit value, but the lower
32-bits “wrap” to 16 (the initialization value). This behavior supports Mac™ OS
which uses an ID number space of 16 through 2232% - 1 inclusive, and will not |
cause problems for other platforms.

Uniquel D is used whenever a new file or directory is created, or another name is
linked to an existing file or directory. The File Identifier Descriptors and File
Entries/Extended File Entries used for a stream directory and named streams |
associated with afile or directory do not use Uniquel D; rather, the unique ID
fields in these structures take their value from the Uniquel D of the File
Entry/Extended File Entry of the file/directory the streams they are associated
with._The same counts for File Entries/Extended File Entries used to define an
Extended Attributes Space.

When afile or directory is created, this Uniquel D is assigned to the Uniquel D field
of the File Entry/Extended File Entry, the lower 32-bits of UniquelD are assigned
to UDFUniquel D in the Implementation Use bytes of the long—a<l CB field in the
File Identifier Descriptor (see 2.3.4.23), and Uniquel D is incremented by the
policy described above.

When aname s linked to an existing file or directory, the lower 32-bits of
NextUniquel D are assigned to UDFUniquel D in the Implementation Use bytes of
the long-—ad| CB field in the File I dentifier Descriptor (see 2.3.4.23), and Uniquel D |
isincremented by the policy described above.

The lower 32-bits shall be the same in the File Entry/Extended File Entry and its |
first File Identifier Descriptor, but they shall differ in subsequent FIDs.

All UDF implementations shall maintain the UDFUniquel D in the FID and

Uniquel D in the FE/EFE as described in this section. The LVHD in aclosed
Logica Volume Integrity Descriptor shall have a valid Uniquel D.

March 15, 2000

UBbF200
tH 0

3.3 Part 4 - File System
3.3.1 Fileldentifier Descriptor

struct FileldentifierDescriptor { [* ECMA 167 4/14.4 %/
struct tag DescriptorTag;
uint16 FileVersonNumber;
uint8 FileCharacteristics;
Uint8 LengthofFilel dentifier;
struct long_ad ICB;
uint16 Lengthofl mplementationUse;
byte ImplementationUse[];
char Filel dentifier[];
byte Padding[];
}

3.3.1.1 Uint8-FileChar acteristics
The following sections describe the usage of the FileCharacteristics under various
operating systems.

3.3.1.1.1 MSDOS, 052, Windows 95, Windows NT, M acintosh
&~ |f Bit Oisset to ONE, the file shall be considered a "hidden" file.
If Bit 1 isset to ONE, the file shall be considered a "directory."
If Bit 2 is set to ONE, the file shall be considered "deleted.”
If Bit 3 is set to ONE, the ICB field within the associated Fileldentifier
structure shall be considered as identifying the "parent” directory of the
directory that this descriptor is recorded in

& If the file is designated as a "hidden” file, Bit O shall be set to ONE.
If the file is designated as a"directory,” Bit 1 shall be set to ONE.
If the file is designated as "deleted,” Bit 2 shall be set to ONE.

3.3.1.1.2 UNIX_and OS/400
Under UNIX and OS/400 these bits shall be processed the same as
specified in 3.3.1.1.1., except for hidden files which will be processed as
normal non-hidden files.

HioF 2.01 March 15, 2000
O
UbF2.00 AprH-3-1998

3.3.2 ICB Tag
struct icbtag {

[* ECMA 167 4/14.6 */

Uint32 PriorRecordedNumberofDirectEntries,
Uint16 Strategy Type;

byte StrategyParameter|2];

Uint16 NumberofEntries,

byte Reserved;

Uint8 FileType;

Lb addr Parentl CBLocation;

Uint16 Flags,

3.3.2.1 Uint16 Flags

3.3.2.1.1 MSDOS, 092, Windows 95, Windows NT
Bits6 & 7 (Setuid & Setgid):
&~ lgnored.

= In the

interests of maintaining security under environments which do

support these bits; bits 6 and 7 shall be set to ZERO if any one of the
following conditions are true::

Bit 8 (Sticky):

A fileis created.
The attributes/permissions associated with a file, are modified .

A file is written to (the contents of the data associated with a file
are modified).

An Extended Attribute associated with the file is modified.

A stream associated with afile is modified.

&~ lgnored.

& Shall be set to ZERO.

Bit 10 (System):
&~ Mapped to the MS-DOS / OS2 system bit.

& Mapped from the MS-DOS / OS/2 system bit.

5@3 2.01

March 15, 2000

UBbF200
tH 0

3.3.2.1.2 Macintosh

Bits6 & 7 (Setuid & Setgid):
&~ lgnored.

& In the interests of maintaining security under environments, which do |
support these bits; bits 6 and 7 shall be set to ZERO if any one of the
following conditions are true::

Bit 8 (Sticky):

A fileis created.
The attributes/permissions associated with afile, are modified-. |

A file is written to (-the contents of the data associated with a file
are modified-).

An Extended Attribute associated with the file is modified.

A stream associated with a file is modified. |

&~ lgnored.

a1 Shall be set to ZERO.

Bit 10 (System):
&~ lgnored.

a1 Shall be set to ZERO.

3.3.2.1.3 UNIX

Bits 6, 7 & 8 (Setuid, Setgid, Sticky):
These bits are mapped to/from the corresponding standard UNIX file system bits.

Bit 10 (System):
&~ lgnored.

& Shall be set to ZERO upon file creation only, otherwise maintained.

3.3.2.1.4 OS/400

Bits6 & 7 (Setuid & Setgid):

& |gnored.

BRF 2.01

March 15, 2000

UBbF200
tH 0

BI?_F 2.01

&= In the interests of maintaining security under environments, which do

support these bits; bits 6 and 7 shall be set to ZERO if any one of the

following conditions are true:

A fileis created.

The attributes/permissions associated with afile, are modified.

A file is written to (the contents of the data associated with a file

are modified).

An Extended Attribute associated with the file is modified.

A stream associated with afile is modified.

Bit 8 (Sticky):

& | gnored.

& Shall be set to ZERO.

Bit 10 (System):

& | gnored.

&= Shall be set to ZERO upon file creation only, otherwise maintained.

March 15, 2000

UDE2 00
==

Apri-3,1093

3.3.3 FileEntry
struct FileEntry {

}

struct tag

struct icbtag
Uint32

Uint32

Uint32

Uint16

uint8

Uint8

uint32

uint64

uint64

struct timestamp
struct timestamp
struct timestamp
uint32

struct long_ad
struct EntitylD
Uint64

uint32

uint32

byte

byte

[* ECMA 167 4/14.9 */
DescriptorTag;

ICBTag;

vid;

Gid;

Permissions;
FileLinkCount;
RecordFormat;
RecordDisplayAttributes;
RecordLength;
InformationLength;
LogicalBlocksRecorded;
AccessTime;
ModificationTime;
AttributeTime;
Checkpoint;
ExtendedAttributel CB;

| mplementationl dentifier;
Uniquel D,

LengthofExtendedAttributes;
LengthofAllocationDescriptors,

ExtendedAttributed[];
AllocationDescriptorq[];

NOTE: The total length of a FileEntry shall not exceed the size of one logical

block.

3.3.3.1 Uint32-Uid
For operating systems that do not support the concept of a user identifier
the implementation shall ignore thisfield. For operating systems that do

support thisfield avalue of 2+ - 1 shall indicate an invalid UID, otherwise
the field contains avalid user identifier.

&

For operating systems that do not support the concept of a user identifier
the implementation shall set thisfield to 2% - 1 to indicate an invalid UID,
unless otherwise specified by the user.

3.3.3.2 Uint32 -Gid
For operating systems that do not support the concept of a group identifier
the implementation shall -ignore this field. For operating systems that do
support thisfield avalue of 2+ - 1 shall indicate an invalid GID, otherwise
the field contains avalid group identifier.

EQF 2.01

&

March 15, 2000

UBbF200
tH 0

3.3.3.3 Uint32 -Permissions:

* Definitions: */

gRF 2.01

&

For operating systems that do not support the concept of a group identifier
the implementation shall set thisfield to -2* - 1 to indicate an invalid GID,

unless otherwise specified by the user.

execute file
Wite May change file contents
May examine file contents
ChAttr May change file attributes My

OTHER_Execut e 0x00000001

0x00000002
0x00000004
0x00000008
0x00000010

0x00000020
0x00000040
0x00000080
0x00000100
0x00000200

0x00000400
0x00000800
0x00001000
0x00002000
0x00004000

/

/* Bit for a File
/*

/* Execute My

/*

/* Read

/*

/* Delete My delete file
#defi ne

#define OTHER Wite
#defi ne OTHER Read
#define OTHER ChAttr
#define OTHER Del ete
#defi ne GROUP_Execute
#define GROUP_Wite
#defi ne GROUP_Read
#define GROUP_ChAttr
#defi ne GROUP_Del ete
#defi ne OANER_Execut e
#define ONMNER Wite
#defi ne OMNER_Read
#define OANER_ChAttr
#define OANNER Del ete

a Directory

search directory

*/

____________________________ * |

create and delete files */
list files in directory */
change dir attributes */

del ete directory

The concept of permissions whichthat deals with security is not completely
portable between operating systems. This document attempts to maintain

consistency among implementations in processing the permission bits by

addressing the following basic issues:
1. How should an implementation handle Owner, Group and Other
permissions when the operating system has no concept of User and

3.

Group |ds?
How should an implementation process permission bits when

encountered, specifically permission bits that do not directly map to an
operating system supported permission bit?
What default values should be used for permission bits that do not

directly map to an operating system supported permission bit when
creating anew file?

YserOwner, Group and Other
In general, for operating systems that do not support User and Group lds the

following algorithm should be used when processing permission hits:

When reading a specific permission, -the logical OR of all three (owner,
group, other) permissions should be the value checked. For example afile

March 15, 2000

OO
UBbF200
tH 0

an operating system supported permission bit -when creating a new file.

would be considered writable if the logical OR of OWNER_Write,
GROUP_Write and OTHER_Write was equal to one.

When setting a specific permission the implementation should set all three
(owner, group, other) sets of permission bits. For example to mark afile
as writable the OWNER_Write, GROUP_Write and OTHER_Write should
all be set to one.

Default Permission Values
For the operating systems covered by this document the following table describes
what default values should be used for permission bits that do not directly map to

Permission | File/Directory Description DOS 0S/2 | Win Win Mac | UNIX &
95 NT 0OS | 0S/400

Read file Thefile may be read 1 1 1 1 1 9]
Read directory Thedirectory may beread, only if the directory 1 1 1 1 1 U

isalso marked as Execute.
Write file Thefile' s contents may be modified U U U U U U
Write directory Files or subdirectories may be renamed, added,] U U U U U

or deleted, only if the directory isalso marked as

Execute.
Execute file Thefile may be executed. 0 0 0 0 0 U
Execute directory The directory may be searched for a specific file 1 1 1 1 1]

or subdirectory.
Attribute | file Thefile's permissions may be changed. 1 1 1 1 1 Notel |
Attribute | directory Thedirectory’ s permissions may be changed. 1 1 1 1 1 Note 1
Delete file Thefile may be deleted. Note2 | Note2 | Note2| Note2 | Note2 | Note2
Déete directory The directory may be