AMNCTA
I II\. OST AR
Optical Storage Revision 12.500
Technology Association

MAMNCTA
I I\ April 3, 1998
Optical Storage
Technology Association

Universal Disk
Format ™
Specification

Revision 12.500

April 3, 19978
© Copyright 1994, 1995, 1996, 1997
Optical Storage Technology Association

ALL RIGHTSRESERVED

Revision History:

1.00 October 24, 1995 Original Release

1.01 November 3, 1995 ———DVD appendix
added

1.02 ————August 30, 1996 Incorporates Document Change

Notices

DCN 2-001 through DCN 2-024

150 February 4, 1997 Integrated support for CD-R and

CD-RW media

(DCN 2-025 through DCN 2-032)

2.00 April 3,1998 Integrated support for ECMA 167 3 Edition which

included the support for named streams.
(DCN 2-033 through DCN 2-064)

Optical Storage Technology Association
311 East Carrillo Street
Santa Barbara, CA 93101
(805) 963-3853 Voice
(805) 962-1541 Fax
info@osta.org
http://www.osta.org

This document along with the sample source code is available in eectronic format from OSTA.

Important Notices

This document is a specifi cation adopted by Optical Storage Technology Association (OSTA). Thisdocument may be revised by OSTA. It isintended
solely as a guide for companiesinterested in developing products which can be compatible with other products devel oped using this document. OSTA
makes no representation or warranty regarding this document, and any company using this document shall do so at its sole risk, including specifically the
risksthat a product devel oped will not be compatible with any other product or that any particular performance will not be achieved. OSTA shall not be
liable for any exemplary, incidenta, proximate or consequentia damages or expenses arising from the use of this document. This document defines only
one approach to compatibility, and other approaches may be available in the industry.

This document is an authorized and gpproved publication of OSTA. The underlying information and materias contained herein are the exclusive
property of OSTA but may be referred to and utilized by the genera public for any legitimate purpose, particularly in the design and development of
writable optica systems and subsystems. This document may be copied in whole or in part provided that no revisions, dterations, or changes of any kind
are made to the materia's contained herein. Only OSTA has the right and authority to revise or change the materia contained in this document, and any
revisions by any party other than OSTA are totally unauthorized and specificaly prohibited.

Compliance with this document may require use of one or more features covered by proprietary rights (such as features which are the subject of a patent,
patent application, copyright, mask work right or trade secret right). By publication of this document, no position is taken by OSTA with respect to the
vaidity or infringement of any patent or other proprietary right, whether owned by a Member or Associate of OSTA or otherwise. OSTA hereby
expressly disclaims any liability for infringement of intellectua property rights of others by virtue of the use of this document. OSTA has not and does
not investigate any notices or dlegations of infringement prompted by publication of any OSTA document, nor does OSTA undertake a duty to advise
users or potentid users of OSTA documents of such notices or dlegations. OSTA hereby expressly advises dl users or potentia users of this document
to investigate and analyze any potentid infringement situation, seek the advice of intellectua property counsel, and, if indicated, obtain alicense under
any applicable intellectua property right or take the necessary steps to avoid infringement of any intellectua property right. OSTA expressly disclams
any intent to promote infringement of any intellectua property right by virtue of the evolution, adoption, or publication of this OSTA document.

Universal Disk Format™ and UDF™ are trademarks of the Optical Storage Technology Association.

CONTENTS

1 INTRODUCTION oottt e e e e e e e e e e e e e e e e e snsnnneaeaeas 11
1.1 DOCUMENT LAYOUL ...eeiiiiiiieiieiiee ettt ettt r e sb e 22
1.2 COMPIIAINCE. .. ci ittt 33
1.3 GeNEral REFEIENCES.ot 33

O B L= 1= 1= 1[0/~ PRSPPSO 33
L1322 DEMINITIONS ..ot et e e e ettt e e st e e e e st e e e e s bt e e e e sbbeeeeanraeaeanns 44
G T N I = 1 1 01 PRSP 66

2. _BASIC RESTRICTIONS & REQUIREMENTS ... 7

2.1 PArt L - GENEIAL ...ttt 99
A I O o= o (= = (= PSSP Q9
212 OSTA CSO CREISDEC. .. .eeeteeiteeiteestee sttt st ste ettt ste et e sb e st st nbe e s b e e beesbeesbeenbeenneenneas 1010
2.01.3 DISEIINGS ..ttt stttk sttt b bbb bbbt bbbt b bttt et e neenen 1010
N [00== = 0 o TSP URPPRRPRUPROP 1111
215 ENULY TAONTTIEN ..ot 1111

2.2 Part 3- VOIUME SEFUCLUN ...ttt 1616
A R B == o] o0 g I o [OOSR PSPPI 1616
222 Primary VOlUME DESCIIPION . ..cveiiveeiteeiteesiee st st sttt ste ettt et 1717
2.2.3__ Anchor Volume DesCriptor POINTENcouiiiiiiiieeiee sttt 1919
224 L0QiCal VOIUME DESCIIIONciveiiteeitee st steestee st sttt ettt ettt 2020
225 Unallocated SPace DESCITIONccuveiriiieerieesiee st stee st stee sttt sbe et ee e neenesne e 2222
2.2.6__Logical Volume INtegrity DESCIIPLON.......ccuiieiiieirieiriiesiee et 2222
227 Implemention Use VOolUME DESCIIPLOLcoviiiiiieeiiie ittt 2424
228 Virtual Partition IMaD......c..eoieiiiiieeiieieesie st 2626
229 Sparable Partition M@ooeiiiiiee ettt 2626
2.2.10- Virtual AHOCEEHON TaDIE....ocoeieeecee et e 2727
2211 SPANG TADIE. ..o 3131

2.3 Part 4 - FilE SYSLEM. ..ot 3333
G B == o] o1 0 g Ir= o [OO POV P OPR PP 3333
2.3.2_ FilE SOl DESCIILONeeiteeitee ittt sttt ettt sttt ettt ettt ettt et b e b e b e neene e 3434
2.3.3__ Partition Header DESCIIPLIONeiieiiieiiieeiiee sttt sttt ettt ettt 3636
234 Fileldentifier DESCIPIONoiviiiiieiieiiie ettt 3737
GRS 1O = T I o F PP PP URRPRRPRTPRP 3939
236 FIIEENIIY oo 4141
237 UNallocated SPace ENMIY......c.eiuiiiiiiiiiieites sttt 4343
2.3.8_ SPace BitMap DESCIIILONcvietiereeiieie ettt sttt 4343
2.3.9_ Partition INLErity ENLIYooiiiiiic s 4444
2.3.10-_ AllOCALTON DESCIIPLONS. c..eeuveeuteeiteeite ettt sttt st bbbt sb ettt et e esn e e s e naeenneens 4444
2.3. 11 AllOCatiON EXIENT DESCITION....c.veeuveeueeeiee ettt sttt sb et sr bt 4545
2.3 12 PaINNAIME ...ttt 4646

24 Part5-ReCONd SITUCIUN @, it 46
313 NOR-AHOEAABIE SPAEE IS .oiieeeee e ee e e e e e e e e e e 46

3-SYSTEM DEPENDENT REQUIREMENTS.....ccoiiiie e 4747

3L PArt L - GENEIAL ..ttt e 4747
N N N[00 1== = 0 o TSP PR PPROPROPROP 4747
3.2 Part 3- VOIUME SEFUCLUNeiiiieiiieieiet ettt ne e 4848
321 Logical Volume HEader DESCIIPIONuuiiieiiieirieerieisiee st siee st 4848
3.3 PArt 4 - FilE SYSLOM. ...t 4949
3.3 L Fileldentifier DESCIPIONciviieiieiiieesie ettt 4949
R O = T I o DTSSR P PP URTOPTP 5050
B33 R ENIY e 5252
3.34 EXtended AtrIDULES.ooie e 5656
335 NAMEA SIEAMS ..ttt 67
3.3.6 Extended Attributes as named SIreaMScueiiiiiiiiiiiiiieise i 70
3.37 UDF Defined SyStem SHEAMScvueiiiiiiiiiiiiiiii ittt 71
3.3.8 UDF Defined NON-SyStem SIr@AIMS.....cveeiiiieiiiiiiiiiii i st 77
4- USER INTERFACE REQUIREMENTS ... 7979
A1 Part 3- VOIUME SEEUCKLUI ...ttt ettt sb e b 7979
A2 Part 4 - File SYSLOIM ..ot 7979
A e 1O = R = o TP U RSP ORI PRP 7979
422 File 1dentifier DESCITPIONoieiieiiiiiree ettt 8080
5 INFORM ATV E . ettt e e e e e e e e e e rnareaaeeeeaanns 8787
5.1 DESCIIPIOr LENGENS. .. .iitiiiiiiieii ettt bbb 8787
5.2 Using IMplementation USE ANEaS.........ccuiiiiiiiiiiiiiiie ettt 8787
521 ENUtY IAONTTIOrS. .ei i 8787
5,22 OrPhan SPACE......ueiiiiiiiee it 8787
5.3 BOOE DESCIIPLON ...t e s s s 8888
5.4 TeChNICAI CONLACESoiuiiiiiiitieitie ittt et 8888
6. APPENDICES et e e e e e e e e e e e e e e e e e e e aans 8989
6.1 UDF Entity Identifier DefinitioNS..........ccoooiiiiiiiiiiiicc e 8989
6.2 UDF Entity ldentifier VAIUEScccoiiiiii e 9090
6.3__Operating System [AeNTIfIEr Sooiiieiee e 9191
6.4__ OSTA Compressed Unicode AlgOrithm ..o 9393
6.5 CRC CAlCUIBLION ...ttt ettt ettt b bbb bbbt 9595

6.6__Algorithm for Strategy TYPE 4096c.oeiuieiiiiiieii ettt 9898

6.7-__ldentifier Trandation AlQOrithimS........ccooiiii e 9999
6.7.1_ DOS ALGOTITNM ...ttt 9999
6.7.2- OS2, Macintosh,Windows 95, Windows NT and UNIX Algorithmcccceeeenee. 103103

6.8 __Extended Attribute Checksum AlQOrithm ..o 108108

6.9 RequirementsSfor DVD-ROMccoiiiiiiiiiiiei et 109109
6.9.1_ Constraintsimposed by UDF for DVD-VIdE0.......c.cooiiiiiiiiiiiieiicsec e 109109
6.9.2 HOWOread AUDF diSC......cvuiieiiiiic ittt 110110
6.9.3_ Obtaining DV D DOCUMENTS........ccviiiiiriiiiieiriresiee st nnees 112112

6.10_ RecommendationSfor CD MeEdIaccoueeiieiiiiiieiieie e 113113
6.10.1- Use Of UDF 0N CD-R MEIAL......ccuviiiieriiiiiieiiie sttt 113113
6.10.2-__Use of UDF 0N CD-RW MEIA.......cceiiiiiiiiiieiieesiiesiee st 115115
6.10.3- Multisession and MiXed MOUE............cooueiiiiiiiiic et 117117

6.11- UDF Media Format RevViSION HiStOMY......couiiiiiiiiieiieieee e 120120

6.12- Developer RegiStration FOMMc.oiiiiiiiiieiieie e 121121

This page left intentionally blank

1. Introduction

The OSTA Universal Disk Format (UDF™) specification defines a subset of the standard
13346ECMA 167 3™ edition. The primary goal of the OSTA UDF is to maximize data interchange
and minimize the cost and complexity of implementing SO/ EC-13346ECMA 167.

To accomplish this task this document defines a Domain. A domain defines rules and restrictions on
the use of 1SO/EC 13346ECMA 167. The domain defined in this specification is known s the
“OSTA UDF Compliant” domain.

This document attempts to answer —the following questions for the structures of
13346ECMA 167 on a per operating system basis:

Given some +SO/HEC 13346ECMA 167 structure X, for each field in structure X answér the
following questions for a given operating system:

1) When reading thisfield: If the operating system supports the data in |
this field then what should it map to in the operating system?

2) When reading thisfield: If the operating system supports the data in this field with
certain limitations then how should the field be interpreted under this operating
system?

3) When reading thisfield: If the operating system does NOT support the data in this
field then how should the field be interpreted under this operating system?

4) When writing this field: If the operating system supports the data for thisfield then
what should it map from in the operating system?

5) When writing thisfield: If the operating system does NOT support the data for this
field then to what value should the field be set?

For some structures of |SO/IEC 13346ECMA 167 the answers to the above questions were|self -
explanatory and therefore those structures are not included in this document.

In some cases additional information is provided for each structure to help clarify the standard.

This document should help make the task of implementing the }SO/EC-13346ECMA 167 stahdard
easier.

To be informed of changes to this document please fill out and return the OSTA UDF Developers
Registration Form located in appendix 6.12.

UDF 2.00 April 3,1998 |

=

1.1 Document Layout

This document presents information on the treatment of structures defined under standard SO/4EC
13346ECMA 167.

This document is separated into the following 4 basic sections:

» Basic Restrictions and Requirements - defines the restrictions and requirements which are
operating system independent.

* System Dependent Requirements - defines the restrictions and requirements which are
operating system dependent.

* User Interface Requirements - defines the restrictions and requirements which are related
to the user interface.

* Informative Annex - Additional useful information.

This document presents information on the treatment of structures defined under standard SO/AEC
13346ECMA 167. The following areas are covered-:

& Interpretation of a structure/field upon reading from media

&5 Contents of a structure/field upon writing to media. Unless specified otherwise writing refers
only to creating a new structure on the media. When it applies to updating an existing
structure on the media it will be specifically noted as such.

The fields of each structure are listed first, followed by a description of each field with respect to the
categories listed above. In certain cases, one or more fields of a structure are not described if the
semantics associated with the field are obvious.

A word on terminology: in common with SOAEC-13346ECMA 167, this document will use shall to
indicate a mandatory action or requirement, may to indicate an optional action or requirement, and
should to indicate a preferred, but ill optional; action or requirement.

Also, special comments associated with fields and/or structures are prefaced by the notification:
"NOTE:"

UDF 2.00 April 3, 1998

N

1.2 Compliance

This document requires conformance to parts 1, 2, 3 and 4 of }SOAEC13346ECMA 167.
Compliance to part 5 of }SO/EC-13346ECMA 167 is not supported by this document. Part 5 may
be supported in alater revision of this document.

For an implementation to claim compliance to this document the implementation shall meet all the
requirements (indicated by the word shall) specified in this document.

The following are afew points of clarification in regards to compliance:

* Multi-Volume support isoptional. Animplementation can claim compliance and only
support single volumes.

* Multi-Partition support isoptional. An implementation can claim compliance without
supporting the special multi-partition case on a single volume defined in this
specification.

* Media support. Animplementation can claim compliance and support a single media
type or any combination. All implementations should be able to read any mediathat is
physically aceessableaccessible.

» Multisession support. Any implementation that supports reading of CD-R media shall
support reading of CD-R Multisessions as defined in 6.10.3.

» File Name Trandation - Any time an implementation has the need to transform a
filename to meet operating system restrictions it shall use the algorithms specified in this
document.

» Extended Attributes - All compliant implementations shall preserve existing extended
attributes encountered on the media. Implementations shall create and maintain the
extended attributes for the operating systems they support. For example, an
implementation that supports Macintosh shall preserve any OS/2 extended attributes
encountered on the media. An implementation that supports Macintosh shall also create
and maintain all Macintosh extended attributes specified in this document.

. Backvvards Read Compatl b|||tv A compliant UDF 2 00 |mplementat|on shall be ableto
read all mediawritten under UDF 1.50 and 1.02.

» Backwards Write Compatibility — UDF 2.00 structures shall not be written to media
which contains UDF 1.50 or UDF 1.02 structures. UDF 1.50 and UDF 1.02 structures
shall not be written to media which contains UDF 2.00 structures. These two
requirements prevent media from containing different versions of the UDF structures.

1.3 General References

1.3.1 References
SO 9660:1988 Information Processing - Volume and File Structure of CD-ROM for Information Interchange

UDF 2.00 April 3, 1998

w

IEC 908:1987 Compact disc digital audio system

ISO/IEC 10149:1993 Information technology - Data Interchange on read-only 120mm optical data discs (CD-ROM
based on the Philips/Sony “Y ellow Book”)

Orange Book part-I1 Recordable Compact Disc System Part-11, N.V. Philips and Sony Corporation
Orange Book part-I1l Recordable Compact Disc System Part-111, N.V. Philips and Sony Corporation

ISO/IEC 13346:1995 Volume and file structure of write-once and rewritable media using non-sequential recording

for information interchange. This SO standard is equivalent to ECMA 167 2™ edition..

ECMA 167 ECMA 167 3" edition is an update to ECMA 167 2™ edition that adds the support for multiple
data stream files, and is available from http://www.ecma.ch. The previous edition of ECMA
167 (2™) was is equivalent to | SO/IEC 13346:1995. References enclosed in [] in this
document are references to ECMA 167 3" edition. Thereferences are in the form [x/a.b.c],
where X is the section number and a.b.c is the paragraph or figure number.

1.3.2 Definitions

Audio session Audio session contains one or more audio tracks, and no data track.

Audio track Q(;Jgio tracks aretracksthat are designated to contain audio sectors specified in the |l SO/IEC

CD-R CD-Recordable. A write once CD defined in Orange Book, part-I1.

CD-RW CD-Rewritable. An overwritable CD defined in Orange Book, part-111.

Clean File System The file system on the media conforms to this specification.

Data track Data tracks are tracks that are designated to contain data sectors specified in el SO/IEC
10149.

Dirty File System A file system that isnot a clean file system.

Fixed Packet An incremental recording method in which all packetsin agiven track are of alength specified

in the Track Descriptor Block. Addresses presented to a CD drive are trandlated according to
the Method 2 addressing specified in Orange Book parts-11 and -111.

ICB A control nodein ECMA 167.
Logical Block Address A logical block number [3/8.8.1].

UDF 2.00 April 3, 1998

BN

NOTE 1: Thisisnot to be confused with alogical block address [4/7.1], given by thelb addr

structure which contains both alogical block number [3/8.8.1] and a partition reference number
[3/8.8], the latter identifying the partition [3/8.7] which contains the addressed | ogical block

3/8.8.1].
NOTE 2: A logica block number [3/8.8.1] translates to alogical sector number [3/8.1.2]

according to the scheme indicated by the partition map [3/10.7] of the partition [3/8.7] which
contains the addressed logical block [3/8.8.1]

Media Block Address A sector number [3/8.1.1], derived from the unique sector address given by arelevant sandard
for recording [1/5.10]. In this specification, a sector number [3/8.1.1] is equivalent to alogical
sector number [3/8.1.2].

Packet A recordable unit, which is an integer number of contiguous sectors [1/5.9], which consist of

Physical Address

user data sectors, and may include additional sectors [1/5.9] which arerecorded as overhead of
the Packet-writing operation and are addressabl e according to the re evant standard for
recording [1/5.10].

A sector number [3/8.1.1], derived from the unique sector address given by arelevant ssandard

Physical Block Address

for recording [1/5.10]. In this specification, a sector number [3/8.1.1] is equivalent to alogical
sector number [3/8.1.2].

A sector number [3/8.1.1], derived from the unique sector address given by arelevant ssandard

physical sector

for recording [1/5.10]. In this specification, a sector number [3/8.1.1] is equivalent to alogical
sector number [3/8.1.2].

A sector [1/5.9] given by arelevant ssandard for recording [1/5.10]. In this specification, a

sector [1/5.9] is equivalent to aalogical sector [3/8.1.2].

Random Access File System A file system for randomly writable media, either write once or rewritable

Sequential File System
Session

Track

UDF

user data blocks

A file system for sequentially written media (e.g. CD-R)

The tracks of a volume shall be organized into one or more sessions as specified by the Orange
Book part-11. A session shall be a sequence of one or more tracks, the track numbers of which
form a contiguous ascending sequence.

The sectors of a volume shall be organized into one or moretracks. A track shall bea
sequence of sectors, the sector numbers of which form a contiguous ascending sequence. No
sector shall belong to more than one track.

Note: There may be gaps between tracks; that is, the last sector of atrack need not be adjacent
to the first sector of the next track.

OSTA Universa Disk Format
The logical blocks[3/8.8.1] which wererecorded in the sectors[1/5.9] (equivalent in this

UDF 2.00

specification to logical sectors[3/8.1.2]) of a Packet and which contain the data intentionally
recorded by the user of the drive. This specifically does not include the logical blocks
[3/8.8.1], if any, whose constituent sectors [1/5.9] were used for the overhead of recording the
Packet, even though those sectors [1/5.9] are addressable according to therelevant standard for
recording [1/5.10]. Like any logical blocks [3/8.8.1], user data blocks are identified by logical
block numbers [3/8.8.1].

April 3,1998

(07}

user data sectors

The sectors [1/5.9] of a Packet which contain the dataintentionally recorded by the user of the

Variable Packet

Virtual Address

drive, specifically not including those sectors [1/5.9] used for the overhead of recording the
Packet, even though those sectors [1/5.9] may be addressable according to the relevant
standard for recording [1/5.10]. Like any sectors[1/5.9], user data sectors areidentified by
sector numbers [3/8.1.1]. In this specification, a sector number [3/8.1.1] is equivaent to aa
logical sector number [3/8.1.2].

An incremental recording method in which each packet in agiven track is of ahost determined
length. Addresses presented to a CD drive are as specified in Method 1 addressing in Orange
Book parts 1l and Il1.

A logical block number [3/8.8.1] of alogical block [3/8.8.1] in a virtua partition. Such a

virtual partition

logical block [3/8.8.1] isrecorded using the space of alogical block [3/8.8.1] of a
corresponding non-virtual partition. The Nth Uint32 in the VAT represents the logical block
number [3/8.8.1] in anon-virtua partition used to record logical block number N of its
corresponding virtual partition. Thefirst virtual addressisO.

A partition of alogical volume [3/8.8] identified in alogical volume descriptor [3/10.6] by a

virtual sector

Type 2 partition map [3/10.7.3] recorded according section 2.2.8 of to this specification. The
virtual partition map contains a partition number which is the same as the partition number
[3/10.7.2.4] ina Type 1 partition map [3/10.7.2] in the same logical volume descriptor [3/10.6].
Each logical block [3/8.8.1] in the virtua partition isrecorded using the space of alogical
block [3/8.8.1] of that corresponding non-virtual partition. A VAT ligsthelogical blocks
[3/8.8.1] of the non-virtua partition which have been used to record the logical blocks [3/8.8.1]
of its corresponding virtual partition.

A logical block [3/8.8.1] in avirtual partition. Such alogica block [3/8.8.1] isrecorded using

VAT

the space of alogical block [3/8.8.1] of a corresponding non-virtual partition. A virtual sector
should not be confused with a sector [1/5.9] or alogical sector [3/8.1.2].

A file [4/8.8] recorded in the space of anon-virtua partition which has a corresponding virtual

VAT ICB

partition, and whose data space [4/8.8.2] is structured according to section 2.2.10 of this
specification. Thisfile provides an ordered list of Uint32s, where the Nth Uint32 represents the
logical block number [3/8.8.1] of anon-virtual partition used to record logical block number N
of its corresponding virtua partition. Thisfile[4/8.8] isnot necessarily referenced by afile
identifier descriptor [4/14.4] of adirectory [4/8.6] in the file set [4/8.5] of thelogical volume

3/8.8].
A File Entry ICB that describes afile containing a Virtual Allocation Table,

1.3.3 Terms
May

Optional

Shall

Should
Reserved

UDF 2.00

Indicates an action or featurethat is optional.

Describes a feature that may or may not be implemented. If implemented, the feature shall be
implemented as described.

Indicates an action or feature that is mandatory and must be implemented to claim compliance
to this standard.

Indicates an action or feature that is optional, but itsimplementation is strongly recommended.

A reserved fidld isreserved for future use and shall be set to zero. A reserved value is reserved
for future use and shall not be used.

April 3,1998

(o))

2. Basic Restrictions & Requirements

The following table summarizes several of the basic restrictions and requirements defined in this
specification. These restrictions & requirements as well as additional ones are described in detail in

the following sections of this specification.

Item

Restrictions & Requirements

Logical Sector Size

The Logical Sector Szefor a specific volume shall be the
same asthe physical sector size of the specific volume.

Logical Block Size

The Logical Block Sze for aLogical Volume shall be set to
the logical sector size of the volume or volume set on which
the specific logical volumeresides.

Volume Sets

All media within the same Volume Set shall have the same
physical sector size. Rewritable/Overwritable mediaand
WORM media shall not be mixed in/ be present in the same
volume set.

Firg 32K of Volume Space

Thefirst 32768 bytes of the Volume space shall not be used
for therecording of 1S©-13246ECMA 167 structures. This
area shall not be referenced by the Unall ocated Space
Descriptor or any other }SG-13346ECMA 167 descriptor.
Thisisintended for use by the native operating system.

Volume Recognition Sequence

The Volume Recognition Sequence as described in part 2 of
FSOHEC13346ECMA 167 shdll be recorded.

Timestamp

All timestamps shall be recorded in local time. Time zones
shall be recorded on operating systems that support the
concept of atime zone.

Entity Identifiers

Entity Identifiers shall be recorded in accordance with this
document. Unless otherwise specified in this specification
the Entity Identifiers shall contain avalue that uniquely
identifies the implementation.

Descriptor CRCs

CRCs shall be supported and calculated for all Descriptors,
except for the Space Bitmap Descriptor.

File Name Length

Maximum of 255 bytes

Maximum Pathsize

Maximum of 1023 bytes

Extent Length

Maximum Extent Length shall be 2% - Logical Block Sze.
Maximum Extent Length for extentsin virtual space shall

be the Logical Block Size.

Primary V olume Descriptor

There shall be exactly one prevailing Primary Volume
Descriptor recorded per volume.

Anchor Volume Descriptor Pointer

Shall berecorded in at least 2 of the following 3 locations:
256, N-256, or N, where N isthe last addressabl e sector of a
volume.

Partition Descriptor

A Partition Access Type of Read-Only, Rewritable,
Overwritable and WORM shall be supported.

There shall be exactly onetype 1 prevailing Peartition
Descriptor recorded per volume, with one exception. For
Volume Sets that consist of single volume, the volume may
contain 2 Partitions with 2 prevailing Pertition Descriptors
only if one has an access type of read only and the other has
an access type of Rewritable or Overwritable, or WORM.
The Logical Volume for this volume would consist of the
contents of both partitions.

UDF 2.00

7 April 3,1998

Logical Volume Descriptor

There shall be exactly one prevailing Logical Volume
Descriptor recorded per Volume Set.

The Logical Volumeldentifier field shall not be null and
should contain aidentifier that aids in the identification of
the logical volume. Specifically, software generating
volumes conforming to this specification shall not set this
field to afixed or trivial value. Duplicate diskswhich are
intended to be identical may contain the same value in this
field. Thisfield is extremely important in logical volume
identification when multiple media are present within a
jukebox. Thisnameistypically what is displayed to the
user

Logical Volume Integrity Descriptor

Shall be recorded. The extent of LVIDs may be terminated
by the extent length.

Unallocated Space Descriptor

A single prevailing Unall ocated Space Descriptor shall be
recorded per volume.

File Set Descriptor

There shall be exactly one File Set Descriptor recorded per
Logical Volume on Rewritable/Overwritable media. For
WORM media multiple File Set Descriptors may be
recorded based upon certain restrictions defined in this
document. The File St Identifier field of the File Set
Descriptor contains aname that may be used as an dias
name for identifying the Logical Volumeto theuser. See
2.3.2.7 for further details. The FSD extent may be
terminated by the extent length.

ICB Tag

Only strategy types 4 or 4096 shall be recorded.

File Identifier Descriptor

Thetotal length of a File Identifier Descriptor shall not
exceed the size of one Logical Block.

File Entry

Thetotal length of a File Entry shall not exceed the size of
one Logical Block.

Allocation Descriptors

Only Short and Long Allocation Descriptors shal be
recorded.

Allocation Extent Descriptors

The length of any single Allocation Extent Descriptor shall
not exceed the Logical Block Sze.

Unallocated Space Entry

Thetotal length of an Unallocated Space Entry shall not
exceed the size of one Logical Block.

Space Bitmap Descriptor

CRC not required.

Partition Integrity Entry

Shall not be recorded.

Volume Descriptor Sequence Extent

Both the main and reserve volume descriptor sequence
extents shall each have aminimum length of 16 logical
sectors._ The VDS Extent may be terminated by the extent
length.

Record Structure

Record structure files, as defined in part 5 of }SCAEC
13346ECMA 167, shal not be created.

UDF 2.00

April 3,1998

0¢]

2.1 Part 1- General

2.1.1 Character Sets
The character set used by UDF for the structures defined in this document is the CSO
character set. The OSTA CSO character set is defined as follows:

OSTA CS0 shall consist of the d-characters specified in the The Unicode Standard, Version
12. 1 gandard0 (1SBN 0-201-48345-9 from Addison-Wesley Publishing Company
http://www.aw.com/devpress, see also http://www.unicode.org), excluding #FEFF and
FFFE), stored in the OSTA Compressed Unicode format which is defined as follows:

OSTA Compressed Unicode for mat

RBP | Length Name Contents
0 1 Compression ID Uint8
1 7? Compressed Bit Stream byte

The Compressionl D shall identify the compression algorithm used to compress the
CompressedBitSream field. The following algorithms are currently supported:

Compression Algorithm

Value Description
0-7 Reserved
8 Value indicates there are 8 bits per character
in the CompressedBitSiream.

9-15 Reserved
16 Value indicates there are 16 bits per

character in the CompressedBitStream.
17-2553 | Reserved

254 Value indicates there is a unique 4-byte
binary number following.
255 Value indicates there is a unigue 8-byte
binary number following.

For a Compressionl D of 8 or 16, the value of the CompressionID shall specify the number of
BitsPerCharacter for the d-characters defined in the CharacterBitStream field. Each
sequence of Compressionl D bits in the Character BitStream field shall represent an OSTA
Compressed Unicode d-character. The bits of the character being encoded shall be added to
the CharacterBitStream from most- to least-significant-bit. The bits shall be added to the
CharacterBitStream starting from the most-significant-bit of the current byte being encoded
into.
NOTE: Thisencoding causes characters written with a Compressionl D of 16 to be
effectively written in big endian format.

The value of the OSTA Compressed Unicode d-character interpreted as a Uint16 defines the
value of the corresponding d-character in the Unicode 12.10 standard. Refer to appendix on

UDF 2.00 April 3, 1998

(e}

OSTA Compressed Unicode for sample C source code to convert between OSTA Compressed
Unicode and standard Unicode 12.10. |

The Unicode byte-order marks, #FEFF and #FFFE, shall not be used.

A Compression |D of 254 or 255 shall indicate that the following 4 or 8 bytes respectively
contain a binary value unigue to the context. E.g. File Identifiers may use a Compression 1D
of 254 or 255 and a byte offset of the FID within the directory to create unique directory
entries when the Deleted bit is set.

2.1.2 OSTA CS0 Char spec

struct Echarspec { [* ECMA 167 1/7.2.1*/
Uint8 CharacterSetType;
byte CharacterSetInfo[63];

}

The Character SetType field shall have the value of O to indicate the CSO coded character set.

The Character Setinfo field shall contain the following byte values with the remainder of the
field set to avalue of 0.

HAF, #53, #54, #41, #20, #43, #6F, #6D, #70, #72, #65, #13, #13, #65, #64, #20, #55,
HOE, #69, #63, #0F, #64, #65

The above byte values represent the following ASCII string:
“OSTA Compressed Unicode”

2.1.3 Dstrings

The 1SO-13346ECMA 167 standard, as well as this document, has normally defined byte positions
relativeto 0. Insection 7.2.12 of 1SO-13346ECMA 167, dstrings are defined in terms of being
relativeto 1. Since this offers an opportunity for confusion, the following shows what the definition
would be if described relative to 0.

7.2.12 Fixed-length char acter fields

A dstring of length nisafield of n bytes where d-characters (1/7.2) arerecorded. The number of bytes used to
record the characters shall be recorded asa Uint8 (1/7.1.1) in byte n-1, where n isthe length of the field. The
characters shall be recorded starting with thefirs byte of thefield, and any remaining byte positions after the
characters up until byte n-2 inclusive shall be set to #00.

If the number of d-charactersto be encoded is zero, the length of the dstring shall be zero. NOTE:
The length of a dstring includes the compression code byte(2.1.1) except for the case of a zero length
string. A zero length string shall be recorded by setting the entire dstring field to all zeros.

UDF 2.00 April 3, 1998

=
()

2.1.4 Timestamp

struct timestamp { [* 1SO-13346ECMA 167 1/7.3*/
Uint16 TypeAndTimezone;
Uint16 Y ear;
Uint8 Month;
Uint8 Day;
Uint8 Hour,;
Uint8 Minute;
Uint8 Second;
Uint8 Centiseconds;
Uint8 HundredsofMicroseconds;
Uint8 Microseconds,
}

2.1.4.1 Uint16 TypeAndTimezone;
For the following descriptions Type refers to the most significant 4 bits of this field, and
TimeZone refersto the least significant 12 bits of this field.

&~ Thetime within the structure shall be interpreted as Local Time since Type shall be
equal to ONE for OSTA UDF compliant media.

& Type shall be set to ONE to indicate Local Time.

&~ Shall be interpreted as specifying the time zone for the location when this field was
last modified. If this field contains -2047 then the time zone has not been specified.

& For operating systems that support the concept of atime zone, the offset of the time
zone (in 1 minute increments), from Coordinated Universal Time, shall be inserted in
this field. Otherwise the time zone portion of this field shall be set to -2047.

Note: Time zones West of Coordinated Universal Time have negative offsets. For example,
Eastern Standard Time is -300 minutes; Eastern Daylight Time is -240 minutes.

2.1.5 Entity Identifier

struct EntitylD { [* 1SO-13346ECMA 167 1/7.4*/

Uint8 Flags,

char I dentifier[23];

char | dentifier Suffix[8];
}

UDF 2.00 April 3, 1998

=
=

UDF classifies Entity Identifiersinto 3 separate types as follows:

* Domain Entity Identifiers
» UDF Entity Identifiers
* Implementation Entity Identifiers

The following sections describes the format and use of Entity Identifiers based upon the
different types mentioned above.

2.1.5.1 Uint8 Flags
e Self explanatory.

& Shall be set to ZERO.

2.1.5.2 char ldentifier
Unless stated otherwise in this document this field shall be set to an identifier that uniquely
identifies the implementation. This methodology will alow for identification of the
implementation responsible for creating structures recorded on media interchanged between
different implementations.

If an implementation updates existing structures on the media written by other
implementations the updating implementation shall set the Identifier field to a value that
uniquely identifies the updating implementation.

The following table summarizes the Entity Identifier fields defined in the }S©-13246ECMA
167 standard and this document and shows to what values they shall be set.

Entity |dentifiers

Descriptor Field ID Value Suffix Type
Primary Volume Implementation ID “*Developer ID” Implementation
Descriptor Identifier Suffix
Implementation Use | Implementation ID “*Developer ID” Implementation
VVolume Descriptor Identifier Suffix
Implementation Use | Implementation “*UDF LV Info” UDF ldentifier Suffix
Volume Descriptor |Bdentifier
Partition Descriptor Implementation ID “*Developer ID” Implementation

Identifier Suffix
Logical Volume Implementation ID “*Developer ID” Implementation
Descriptor Identifier Suffix
Logical Volume Domain ID "*OSTA UDF DOMAIN Identifier
Descriptor Compliant" Suffix
File Set Descriptor Domain ID "*OSTA UDF DOMAIN Identifier
Compliant" Suffix
File Identifier Implementation 1D “*Developer ID” Implementation
Descriptor Identifier Suffix
(optional)
File Entry Implementation ID “*Developer ID” Implementation
Identifier Suffix
UDF 2.00 12 April 3,1998

UDF Extended Implementation ID See Appendix UDF ldentifier Suffix

Attribute

Non-UDF Extended Implementation 1D “*Developer ID” Implementation

Attribute Identifier Suffix

Device Specification | Implementation 1D “*Developer ID” Implementation

Extended Attribute Identifier Suffix

Logical Volume Implementation ID “*Developer ID” Implementation

Integrity Descriptor Identifier Suffix

Partition Integrity Implementation ID N/A N/A

Entry

Virtual Partition Map | Partition Type “*UDF Virtual UDF Identifier Suffix
I dentifier Partition”

Sparable Partition Partition Type “*UDF Sparable UDF Identifier Suffix

Map I dentifier Partition”

Virtual Allocation Entity ID “*UDF Virtual UDF Identifier Suffix

Table Alloc Thl”

Sparing Table Sparing ldentifier “* UDF Sparing UDF Identifier Suffix

Table’

NOTE: The value of the Entity Identifier field is interpreted as a sequence of bytes,
and not as adstring specified in CS0. For ease of use the values used by UDF for this
field are specified in terms of ASCII character strings. The actual sequence of bytes
used for the Entity Identifiers defined by UDF are specified in the appendix.

Inthe ID Value column in the above table “ *Developer ID” refersto a Entity Identifier that
uniquely identifies the current implementation. The value specified should be used when a new
descriptor is created. Also, the value specified should be used for an existing descriptor when
anything within the scope of the specified Entityl D field is modified.

NOTE: The value chosen for a“ *Developer ID” should contain enough information to
identify the company and product name for an implementation. For example, a company
called XYZ with a UDF product called DataOne might choose “ * XYZ DataOne” astheir
developer ID. Also in the suffix of their developer ID they may choose to record the current
version number of their DataOne product. This information is extremely helpful when trying
to determine which implementation wrote a bad structure on a piece of media when multiple
products from different companies have been recording on the media

The Suffix Type column in the above table defines the format of the suffix to be used with the
corresponding Entity Identifier. These different suffix types are defined in the following paragraphs.

NOTE: All Identifiers defined in this document (appendix 6.1) shall be registered by OSTA
as UDF ldentifiers.

2.1.5.3 ldentifier Suffix
The format of the Identifier Suffix field is dependent on the type of the Identifier.

UDF 2.00 April 3,1998

=
w

UDF 2.00

In regard to OSTA Domain Entity Identifiers specified in this document (appendix 6.1) the
| dentifier Suffix field shall be constructed as follows:

Domain | dentifier Suffix field format

RBP | Length Name Contents
0 2 UDF Revision uintl6 (=
#01500200)
2 1 Domain Hags Uint8
3 5 Reserved bytes (= #00)

The UDFRevision field shall contain #21500200 to indicate revision £2.500 of this
document. Thisfield will allow an implementation to detect changes made in newer
revisions of this document. The OSTA Domain Identifiers are only used in the Logical
Volume Descriptor and the File Set Descriptor. The DomainFlags field defines the
following bit flags:

Domain Flags
Bit Description
0 Hard Write-Protect

1 Soft Write-Protect
2-7 Reserved

The SoftWriteProtect flag is a user settable flag that indicates that the volume or file system
structures within the scope of the descriptor in which it resides are write protected. A
SoftWriteProtect flag value of ONE shall indicate user write protected structures. This flag
may be set or reset by the user. The HardWriteProtect flag is an implementation settable flag
that indicates that the scope of the descriptor in which it resides is permanently write
protected. A HardWriteProtect flag value of ONE shall indicate a permanently write
protected structure. Once set this flag shall not be reset. The HardWriteProtect flag
overrides the SoftWriteProtect flag. These

The write protect flags ﬂFeGHI-yLHSQGQQQ inthe Loglcal Volume Deﬂ:rlptor and in the F|Ie
Set Descriptor. The ‘

theFHe-Sa-Beseriptarsy shall be mterpreted asfollows

is fileset_write protected = LVD.HardWriteProtect || LV D.SoftWriteProtect ||
FSD.HardWriteProtect || FSD.SoftWriteProtect

is fileset hard protected = LVD.HardWriteProtect || FSD.HardWriteProtect

is fileset soft protected = (LVD.SoftWriteProtect || FSD.SoftWriteProtect) & & (!
is vol hard protected)

is vol_write protected = LVD.HardWriteProtect || LV D.SoftWriteProtect

is vol_hard protected = LVD.HardWriteProtect

is vol_soft_protected = LVD.SoftWriteProtect & & 'LV D.HardWriteProtect

I mplementation use Entity Identifiers defined by UDF (appendix 6.1) the Identifier Suffix
field shall be constructed as follows:

April 3,1998

=
e

UDF I dentifier Suffix

RBP | Length Name Contents
0 2 UDF Revision uintl6 (=
#01500200)
2 1 OS Class uUint8
3 1 OS ldentifier uUint8
4 4 Reserved bytes (= #00)

The contents of the OS Class and OS Identifier fields are described in the Appendix on
Operating System Identifiers.

For implementation use Entity Identifiers not defined by UDF the Identifier Suffix field shall
be constructed as follows:

I mplementation | dentifier Suffix

RBP | Length Name Contents
0 1 OS Class Uint8
1 1 OS ldentifier uint8
2 6 Implementation Use Area bytes

NOTE: It is important to understand the intended use and importance of the OS Class and OS
Identifier fields. The main purpose of these fields is to aid in debugging when problems are found
on a UDF volume. Thefields also provide useful information which could be provided to the end
user. When set correctly these two fields provide an implementation with information such as the
following:

* ldentify under which operating system a particular structure was last modified.

» ldentify under which operating system a specific file or directory was last modified.

» If adeveloper supports multiple operating systems with their implementation, it helpsto

determine under which operating system a problem may have occurred.

UDF 2.00 April 3,1998

=
ol

2.2 Part 3-Volume Structure
2.2.1 Descriptor Tag

struct tag { [* 1SO-13346ECMA 167 3/7.2*/
Uint16 Tagldentifier;
Uint16 DescriptorVersion;
Uint8 TagChecksum;
byte Reserved;
Uint16 TagSerialNumber;
Uint16 DescriptorCRC;
Uint16 Descriptor CRCL ength;
Uint32 TagL ocation;
}

2.2.1.1 Uint16 TagSerialNumber
&~ lgnored. Intended for disaster recovery.

& Reset to a unique value at volume initialization.

The TagSerialNumber shall be set to a value that differs from ones previously recorded, upon
volume re-initialization. It is suggested that: TagSerial Number = ((TagSerialNumber of the
Primary Volume Descriptor) + 1).

2.2.1.2 Uint16 Descriptor CRCLength
CRCs shall be supported and calculated for each descriptor. The value of this field shall be
set to (Size of the Descriptor) - (Length of Descriptor Tag). When reading a descriptor the
CRC should be validated.

2.2.1.3 Uint32 TagL ocation
For structures referenced via a virtual address (i.e. referenced through the VAT), this value

shall be the virtual address, not the physical or logical address.

UDF 2.00 April 3, 1998

=
[02]

2.2.2 Primary Volume Descriptor

struct PrimaryV olumeDescriptor { [* 1SO-13346ECMA 167 3/10.1 */
struct tag DescriptorTag;
Uint32 V olumeDescriptor SequenceNumber;
Uint32 PrimaryV olumeDescriptorNumber;
dstring Volumel dentifier[32];
Uint16 V olumeSegquenceNumber;
Uint16 MaximumV olumeSequenceNumber;
Uint16 Interchangel evel;
Uint16 M aximumlnter changel evel;
Uint32 CharacterSetList;
Uint32 MaximumCharacter SetList;
dstring VolumeSet|dentifier[128];
struct charspec Descriptor Character Set;
struct charspec ExplanatoryCharacter Set;

struct extent_ad VolumeAbstract;
struct extent_ad VolumeCopyrightNotice;

struct EntitylD Applicationldentifier;
struct timestamp RecordingDateandTime;
struct EntitylD—— Implementationldentifier;
byte I mplementationUse[64];
Uint32
———PredecessorV olumeDescriptor Sequencel ocation;
Uint16 Flags,
byte Reserved[22];

}

2.2.2.1 Uint16 Interchangel evel
&~ Interpreted as specifying the current interchange level (as specified in SOAEC
13346ECMA 167 3/11), of the contents of the associated volume and the restrictions
implied by the specified level.

& If this volume is part of a multi-volume Volume Set then the level shall be set to 3, |
otherwise the level shall be set to 2.

1SO-13346ECMA 167 requires an implementation to enforce the restrictions associated with |
the specified current Interchange Level. The implementation may change the value of this
field as long as it does not exceed the value of the Maximum Interchange Level field.

2.2.2.2 Uint1l6 Maximumlnterchangel evel
&~ Interpreted as specifying the maximum interchange level (as specified in I1SOAEC
13346ECMA 167 3/11), of the contents of the associated volume.

& This field shall be set to level 3 (No Restrictions Apply), unless specifically given a
different value by the user.

UDF 2.00 17 April 3, 1998

NOTE: Thisfield isused to determine the intent of the originator of the volume. If thisfield
has been set to 2 then the originator does not wish the volume to be included in a multi-
volume set (interchange level 3). The receiver may override this field and set it to a 3 but the
implementation should give the receiver a strict warning explaining the intent of the
originator of the volume.

2.2.2.3 Uint32 Character SetList
&~ Interpreted as specifying the character set(s) in use by any of the structures defined in
Part 3 of 1SOAEC13346ECMA 167 (3/10.1.9).

& Shall be set to indicate support for CS0 only as defined in 2.1.2.

2.2.2.4 Uint32 MaximumCharacter SetList
& Interpreted as specifying the maximum supported character sets (as specified in
SOMEC-13346ECMA 167) which may be specified in the Character SetlList field.

& Shall be set to indicate support for CS0 only as defined in 2.1.2.

2.2.2.5 dstring VolumeSetldentifier
& Interpreted as specifying the identifier for the volume set .

& The first 16 characters of this field should be set to a unique value. The remainder of
the field may be set to any allowed value. Specifically, software generating volumes
conforming to this specification shall not set this field to a fixed or trivial value.
Duplicate disks which are intended to be identical may contain the same value in this
field.

NOTE: The intended purpose of this is to guarantee Volume Sets with unique
identifiers. The first 8 characters of the unique part should come from a CSO
hexadecimal representation of a 32-bit time value. The remaining 8 characters are
free for implementation use.

2.2.2.6 struct charspec Descriptor Char acter Set
&~ Interpreted as specifying the character sets allowed in the Volume Identifier and
Volume Set I dentifier fields.

& Shall be set to indicate support for CS0 as defined in 2.1.2.
2.2.2.7 struct charspec ExplanatoryCharacter Set
& Interpreted as specifying the character sets used to interpret the contents of the
VVolumeAbstract and VolumeCopyrightNotice extents.

& Shall be set to indicate support for CS0 as defined in 2.1.2.

UDF 2.00 April 3,1998

=
[0¢]

2.2.2.8 struct EntitylD I mplementationl dentifier;

For more information on the proper handling of this field see section 2.1.5.

2.2.3 Anchor Volume Descriptor Pointer

struct AnchorV olumeDescriptorPointer { —* 1SO-13346ECMA 167 3/10.2 */
struct tag DescriptorTag;
struct extent_ad MainV olumeDescriptorSequenceExtent;
struct extent_ad ReserveV olumeDescriptor SequenceExtent;
byte Reserved[480];

}

NOTE: An AnchorVolumeDescriptorPointer structure shall be recorded in at least 2 of the
following 3 locations on the media :

» Logical Sector 256.
* Logical Sector (N - 256).
* N

NOTE: Unclosed CD-R media may have an Anchor Volume Descriptor Pointer recorded at
only sector 512. Upon close, CD-R mediawill conform to the rules above.

2.2.3.1 struct MainVolumeDescriptor SequenceExtent

The main VolumeDescriptor SequenceExtent shall have a minimum length of 16 logical
sectors.

2.2.3.2 struct ReserveVolumeDescriptor SequenceExtent

UDF 2.00

The reserve VolumeDescriptor SequenceExtent shall have a minimum length of 16 logical
sectors.

April 3,1998

1Y
©

2.2.4 Logical Volume Descriptor
struct LogicalVolumeDescriptor {

—/* }SO-13346ECMA 167 3/10.6 */

struct tag DescriptorTag;

Uint32 V olumeDescriptor SequenceNumber;
struct charspec Descriptor Character Set;

dstring LogicalVolumeldentifier[128];
Uint32 L ogicalBlockSize,

struct Entityl D Domainldentifier;

byte L ogicalVolumeContentsUse[16];
Uint32 MapTablel ength;

Uint32 NumberofPartitionM aps;

struct Entityl D Implementationldentifier;

byte I mplementationUse[128];
extent_ad IntegritySequenceExtent,

byte PartitionMapg 7;

}

2.2.4.1 struct charspec Descriptor Char acter Set

& Interpreted as specifying the character set allowed in the Logical Volumel dentifier
field.
& Shall be set to indicate support for CS0 as defined in 2.1.2.

2.2.4.2 Uint32 LogicalBlockSize

&~ Interpreted as specifying the Logical Block Sze for the logical volume identified by
this Logical VolumeDescriptor.
& This field shall be set to the largest logical sector size encountered amongst all the

partitions on media that constitute the logical volume identified by this
LogicalVolumeDescriptor. Since UDF requires that all Volumes within a VVolumeSet
have the same logical sector size, the Logical Block Sze will be the same as the
logical sector size of the Volume.

2.2.4.3 struct EntitylD Domainl dentifier

UDF 2.00

&

Interpreted as specifying a domain specifying rules on the use of, and restrictions on,
certain fields in the descriptors. If this field is all zero then it is ignored, otherwise
the Entity Identifier rules are followed. NOTE: If the field does not contain “* OSTA
UDF Compliant” then an implementation may deny the user access to the logical
volume.

Thisfield shall indicate that the contents of this logical volume conformsto the

domain defined in this document, therefore the Domainldentifier shall be set to:
"*OSTA UDF Compliant"

April 3,1998

N
()

As described in the section on Entity Identifier the IdentifierSuffix field of this
EntitylD shall contain the revision of this document for which the contents of the
Logical Volume is compatible. For more information on the proper handling of this
field see section 2.1.5.

NOTE: The IdentifierSuffix field of this EntitylD contains SoftWriteProtect and
HardWriteProtect flags. Refer to 2.1.4.3.

2.2.4.4 byte L ogicalVolumeContentUse[16]

This field contains the extent location of the FileSet Descriptor. Thisis described in 4/3.1 of ECMA
167 as follows:

“If the volume is recorded according to Part Error! Reference source not found., the extent in which the
first File Set Descriptor Sequence of the logical volume is recorded shall be identified by along ad (Error!
Reference source not found./Error! Reference source not found.) recorded in the Logical Volume
Contents Use field (see Error! Reference source not found./Error! Reference source not found.) of the
Logical Volume Descriptor describing the logical volume in which the File Set Descriptors are recorded.”

This filed can be used to find the FileSet descriptor, and from the FileSet descriptor the root volume
can be found.

2.24.42.2.4.5 struct EntitylD Implementationl dentifier;
For more information on the proper handling of this field see the section on Entity
|dentifier.

22452246 struct extent_ad |ntegritySequenceExtent |
A valuein thisfield isrequired for the Logical Volume Integrity Descriptor. For Rewriteable
or Overwriteable mediathis shall be set to a minimum of 8K bytes.

WARNING: For WORM media thisfield should be set to an extent of some substantial
length. Once the WORM volume on which the Logical Volume Integrity Descriptor resides
is full anew volume must be added to the volume set since the Logical Volume Integrity
Descriptor must reside on the same volume as the prevailing Logical Volume Descriptor.

22462247 byte PartitionMaps |
For the purpose of interchange partition maps shall be limited to Partition Map type 1, except
type 2 maps as described in this document (2.2.8 and 2.2.9).

UDF 2.00 April 3, 1998

N
=

2.2.5

2.2.6

UDF 2.00

Unallocated Space Descriptor

struct UnallocatedSpaceDesc { —/* 1SO-13346ECMA 167 3/10.8 */
struct tag DescriptorTag;
Uint32 V olumeDescriptorSequenceNumber;
Uint32 NumberofAllocationDescriptors;
extent_ad AllocationDescriptors7;

}

This descriptor shall be recorded, even if there is no free volume space.

L ogical Volume I ntegrity Descriptor
struct LogicalVolumelntegrityDesc{ /* 1SO-13346ECMA 167 3/10.10 */

struct tag ——DescriptorTag,
Timestamp ——RecordingDateAndTime,
Uint32 ———IntegrityType,
struct extend_ad NextIntegrityExtent,
byte

L ogicalVVolumeContentsUse[32],
Uint32 —————NumberOfPartitions,
Uint32 ————LengthOfIl mplementationUse,
Uint32 ——FreeSpaceTable-?7.[],
Uint32 ———SizeTabler224[],
byte ——————ImplementationUse[7]

—}
The Logical Volume Integrity Descriptor isa structurethat shall be written any time the
contents of the associated Logical Volume is modified. Through the contents of the Logical
Volume Integrity Descriptor an implementation can easily answer the following useful
guestions:

1) Arethe contents of the Logical Volume in a consistent state?

2) When was the last date and time that anything within the Logical Volume was
modified?

3) What isthe total Logical Volume free space in logical blocks?

4) What is the total size of the Logical Volume in logical blocks?

5) What is the next available Uniquel D for use within the Logical Volume?

6) Has some other implementation modified the contents of the logical volume since

the last time that the original implementation which created the logical volume
accessed it.

April 3,1998

N
N

2.2.6.1 byte L ogicalVolumeContentsUse

See the section on Logical Volume Header Descriptor for information on the contents of this

field.

2.2.6.2 Uint32 FreeSpaceTable

Since most operating systems require that an implementation provide the true free space of a
Logical Volume at mount time it is important that these values be maintained for all non-

virtual partitions. -The optional value of #FFFFFFFF, which indicates that the amount of
available free space is not known, shall not be used for non-virtual partitions. For virtual

partitions the FreeSpaceT able shall be set to #FFFFFFFF.

NOTE: The FreeSpaceTable is guaranteed to be correct only when the Logical Volume

Integrity Descriptor is closed.

2.2.6.3 Uint32 SizeTable

Since most operating systems require that an implementation provide the total size of a
Logical Volume at mount time it is important that these values be maintained for all non-
virtual partitions. -The optional value of #FFFFFFFF, which indicates that the partition size is

not known, shall not be used for non-virtual partitions. For virtua partitions the SizeT able

shall be set to #FFFFFFFF.

2.2.6.4 byte ImplementationUse

UDF 2.00

The ImplementationUse area for the Logical Volume Integrity Descriptor shall be structured

as follows:
I mplementationUse format
RBP | Length Name Contents

0 32 Implementationl D EntitylD

32 4 Number of Files Uint32

36 4 Number of Directories Uint32

40 2 Minimum UDF Read Revision Uintl6

42 2 Minimum UDF Write Revision Uintl6

44 2 Maximum UDF Write Revision Uintl6

46 7 Implementation Use byte

Implementation ID - The implementation identifier Entityl D of the implementation
which last modified anything within the scope of this Entityl D. The scope of this
Entityl D isthe Logical Volume Descriptor, and the contents of the associated Logical
Volume. Thisfield allows an implementation to identify which implementation last

modified the contents of a Logical Volume.

Number of Files - The current number of files in the associated Logical Volume. This
information is needed by the Macintosh OS. All implementations shall maintain this
information. NOTE: This value does not include Extended Attributes or streams as |

part of the file count.

IN
w

April 3,1998

Number of Directories - The current number of directories in the associated Logical
Volume. Thisinformation is needed by the Macintosh OS. All implementations shall
maintain this information.

NOTE: The root directory shall be included in the directory count._ The directory
count does not include stream directories.

Minimum UDF Read Revision - Shall indicate the minimum recommended revision
of the UDF specification that an implementation is required to support to successfully
be able to read all potential structures on the media. This number shall be stored in
binary coded decimal format, for example #0150 would indicate revision 1.50 of the
UDF specification.

Minimum UDF Write Revison - Shall indicate the minimum revision of the UDF
specification that an implementation is required to support to successfully be able to
modify all structures on the media. This number shall be stored in binary coded
decimal format, for example #0150 would indicate revision 1.50 of the UDF
specification.

Maximum UDF Write Revison - Shall indicate the maximum revision of the UDF
specification that an implementation which has modified the media has supported.
An implementation shall update this field only if it has modified the media and the
level of the UDF specification it supportsis higher than the current value of thisfield.
This number shall be stored in binary coded decimal format, for example #0150
would indicate revision 1.50 of the UDF specification.

Implementation Use - Contains implementation specific information unique to the
implementation identified by the Implementation ID.

2.2.7 Implemention Use Volume Descriptor

UDF 2.00

struct ImpUseVolumeDescriptor {

}

[* ECMA 167 3/10.4 */

struct tag DescriptorTag;

Uint32 V olumeDescriptor SequenceNumber;
struct Entityl D Implementationldentifier;

byte ImplementationUse[460];

This section defines an UDF Implementation Use Volume Descriptor. This descriptor shall
be recorded on every Volume of a Volume Set. The Volume may also contain additional

I mplementation Use Volume Descriptors which are implementation specific. The intended
purpose of this descriptor isto aid in the identification of aVVolume within aVVolume Set that
belongs to a specific Logical Volume.

24 April 3,1998

NOTE: Animplementation may still record an additional |mplementation Use Volume
Descriptor in its own format on the media. The UDF Implementation Use Volume
Descriptor does not preclude an additional descriptor.

2.2.7.1 EntitylD Implementation | dentifier

This field shall specify “*UDF LV Info”.

2.2.7.2 bytesImplementation Use

The implementation use area shall contain the following structure:

struct LV Information {

struct charspec LVICharset,

dstring L ogicalVolumel dentifier[128],
dstring LVInfol[36],

dstring LVInfo2[36],

dstring LVInfo3[36],

struct EntitylD ImplementionI D,

bytes ImplementationUse[128];

}

2.2.7.2.1 charspec LVICharset
&~ Interpreted as specifying the character sets allowed in
LogicalVolumel dentifier and LVInfo fields.

& Shall be set to indicate support for CS0 only as defined in 2.1.2.

2.2.7.2.2 dstring LogicalVolumeldentifier
| dentifies the Logical VVolume referenced by this descriptor.

2.2.7.2.3 dstring LVInfol

The fields LVInfol, LVInfo2 and LVInfo3 should contain additional information to aid in

the identification of the media. For example the LVInfo fields could contain information
such as Owner Name, Organization Name, and Contact Information.

2.2.7.2.4 sruct EntitylD ImplementionI D

Refer to the section on Entity Identifier.

2.2.7.2.5 bytesImplementationUse[128]
This area may be used by the implementation to store any additional implementation specific

UDF 2.00

information.

April 3,1998

IN
ol

the

2.2.8 Virtual Partition Map
Thisis an extension of }S©-13346ECMA 167 to expand its scope to include sequentially written
media (eg. CD-R). Thisextension isfor a partition map entry to describe a virtual space.

The Logical Volume Descriptor contains alist of partitions that make up a given volume. Asthe
virtual partition cannot be described in the same manner as a physical partition, a Type 2 partition
map defined below shall be used.

If aVirtual Partition Map is recorded, then the Logical VVolume Descriptor shall contain at least two
partition maps. One partition map; shall be recorded as a Type 1 partition map. One partition map;
shall be recorded as a Type 2 partition map. The format of this Type 2 partition map shall be as
specified in the following table.

Layout of Type 2 partition map for virtual partition

RBP | Length Name Contents
0 1 Partition Map Type uint8 =2

1 1 Partition Map Length uint8 = 64

2 2 Reserved #00 bytes

4 32 Partition Type Identifier EntitylD

36 2 Volume Sequence Number Uint16

38 2 Partition Number uintl6

40 24 Reserved #00 bytes

» Partition Type Identifier:
e Flags=0
e ldentifier =*UDF Virtual Partition
o ldentifierSuffix isrecorded asin section 2.1.5.3
* Volume Segquence Number = volume upon which the VAT and Partition is recorded

e Partition Number = an identification of a partition within the volume identified by the volume sequence
number

2.2.9 Sparable Partition Map

Certain disk/drive systems do not perform defect management (eg. CD-RW). To provide an
apparent defect-free space for these systems, a partition of type 2 isused. The partition map defines
the partition number, packet size (see section 1.3.2), and size and locations of the sparing tables.
Thistype 2 map is intended to replace the type 1 map normally found on the media. This map
identifies not only the partition number and the volume sequence number, but aso identifies the
packet length and the sparing tables. A Sparable Partition Map shall not be recorded on disk/drive
systems that perform defect management.

UDF 2.00 April 3,1998

N
(o))

Layout of Type 2 partition map for sparable partition

RBP Length Name Contents
0 1 Partition Map Type Uint8 = 2
1 1 Partition Map Length Uint8 = 64
2 2 Reserved #00 bytes
4 32 Partition Type Identifier EntitylD
36 2 Volume Sequence Number uintl6
38 2 Partition Number uintl6
40 2 Packet Length Uint16 = 32
42 1 Number of Sparing Tables (=N_ST) uint8
43 1 Reserved #00 byte
44 4 Size of each sparing table Uint32
48 4* N_ST L ocations of sparing tables Uint32
48+4* N_ST [16-4* N_ST | Pad #00 bytes

» Partition Type Identifier:
e Flags=0
e ldentifier =*UDF Sparabl e Partition
e ldentifierSuffix isrecorded asin section 2.1.5.3.
e Partition Number = the number of this partition. Shall identify a Partition Descriptor associated with this
partition.
e Packet Length = the number of user data blocks per fixed packet. Shall be set to 32.
* Number of Sparing Tables = the number of redundant tables recorded. Thisshall be avaluein the range of
lto4.
e Sizeof each sparing table = Length, in bytes, allocated for each sparing table.
» Locations of sparing tables = the gart locations of each sparing table specified as a media block address.

Implementations should align the start of each sparing table with the beginning of a packet.
Implementations should record at least two sparing tables in physically distant locations.

2.2.10 Virtual Allocation Table

The Virtual Allocation Table (VAT) is used on sequentially written media (eg. CD-R) to give the
appearance of randomly writable mediato the system. -The existence of this partition is identified in
the partition maps. -The VAT shall only be recorded on sequentially written media (eg. CD-R).

The VAT isamap that translates Virtual Addresses to logical addresses. -1t shall be recorded as a
file identified by aFile Entry ICB (VAT ICB) which allows gresat flexibility in building the table.
The VAT ICB isthe last sector recorded in any transaction. -The VAT itself may be recorded at any
location.

The VAT shall be identified by a File Entry ICB with afile type of 6248. -This ICB shall be the last
valid data sector recorded -Error recovery schemes can find the last valid VAT by finding ICBs with
filetype & ! ; ‘

Thisfile, when small, can be embedded in the ICB that describesiit. -If it is larger, it can be recorded
in a sector or sectors preceding the ICB. -The sectors do not have to be contiguous, which allows

UDF 2.00 27 April 3,1998

writing only new parts of the table if desired. -This allows small incremental updates, even on disks

with many directories. -Each-sector-can-hold-entriesthat-represent-up-to-512-directories:

When the VAT is small (a small number of directories on the disk), the VAT is updated by writing a
new file ICB with the VAT embedded. -When the VAT becomes too large to fit in the ICB, writing a
single sector with the VAT and a second sector with the ICB is required. -Beyond this point, more
than one sector is required for the VAT. -However, as multiple extents are supported, updating the
VAT may consist of writing only the sector or sectors that need updating and writing the ICB with
pointersto all of the pieces of the VAT.

The Virtual Allocation Table is used to redirect requests for certain information to the proper logical
location. -The indirection provided by this table provides the appearance of direct overwrite

capability. -For example, the secterl CB describing the root directory could be referenced as virtual
sector 1. -A virtual sector is contained in a partition identified by a virtual partition map entry. -Over
the course of updating the disk, the root directory may change. -When it changes, a new sector
describing the root directory iswritten, and its Logical Block Address is recorded asthe Logical

Block Address corresponding to virtual sector 1. -Nothing that references virtual sector 1 needsto |
change, asit still points to the most current virtual sector 1 that exists, even though it exists at a new
Logical Block Address.

The use of virtual addressing allows any desired structure to become effectively rewritable. -The
structure is rewritable when every pointer that references it does so only by its Virtual Address.
When a replacement structure is written, the virtual reference does not need to change. -The proper
entry inthe VAT is changed to reflect the new Logical Block Address of the corresponding Virtual
Address and all virtual references then indirectly point to the new structure. -All structures that
require updating, such as directory 1CBs, shall be referenced by a Virtual Address. -As each structure
is updated, its corresponding entry inthe VAT ICB shall be updated.

The VAT shall be recorded as a sequence of Uint32 entriesin a file. -Each entry shall be the offset,
in sectors, into the physical partition in which the VAT is located. -The first entry shall be for the
virtual partition sector O, the second entry for virtual partition sector 1, etc. -The Uint32 entries shall

seshowed by o ot Doope o Linis 2 copey pndleoilnafollow the locetono—theprerons VAT
{CBheader.

_The entry for the previous VAT ICB allows for viewing the file system as it appeared in an earlier
state. -If this field is #FFFFFFFF, then no such ICB is specified.

UDF 2.00 29 April 3, 1998

Virtual Allocation Table structure

Offset Name Ceontents
LBA-of virtual-sector O Uint32
4 LBA-ofvirtual-sector 1 Uint32
LBA-of virtual-sector 2 Uint32
2048 LBA-of virtual-sector 512 Uint32
N*4 Entity-Hdentifier Entity}lD
- : : :
Anentryof | Length Name Contents
#FFFFEFFFF
indicates
that-the
virtual
secter-is
cuFrerthy
unused-Offs
et
0 2 Length of Header (=L_HD) Uintl6
2 2 Length of Implementation Use (=L_[U) Uintl6
4 128 Logical Volume Identifier dstring
132 4 Previous VAT ICB location Uint32
136 4 Number of FIDs identifying Files Uint32
140 4 Number of non-parent FIDs identifying Uint32
Directories
144 2 Min UDF Read version Uintl6
146 2 Min UDF Write version Uintl6
148 2 Max UDF Write version Uintl6
150 2 Reserved #00 bytes
152 L U | mplementation Use bytes
152+L IU |4 VAT entry O Uint32
156+L IU |4 VAT entry 1 Uint32
I_m‘ormation 4_1_ VAT entry n GntSZ
Length - 4

Length of Header - Indicates the amount of data preceding the VAT entries. This value shall be 152

+L_1U.

UDF 2.00

N
(o)

April 3,1998

Length of Implementation Use - Shall specify the number of bytesin the | mplementation Use field.

If this field is non- zexo, the value shall be at Ieast 32 and be an mteqral multlple of 4.

: FlleSize 36
Nurberetentries (Ny——————
4
Flegs=0

Logical Volume ldentifier ==upF Vit ual—Al-loe Thi
ldentifierSuffixisrecorded- Shall identify the logical volume. This field shall be used by
implementations instead of the corresponding field in the Logical VVolume Descriptor. The value of
this field should be the same as i UBDEF21.53thefield in the LV D until changed by the user.

Previous VAT ICB Location - Shall specify the logical block number of an earlier VAT ICB in the
partition identified by the partition map entry. If thisfield is #FFFFFFFF, no such ICB is specified.

Number of FIDs identifying Files - |dentifies the number of files on the volume, including hard links.
The number of files includes all FIDs in the heirarchy for which the directory bit is not set. The
count does not include FIDs with the deleted bit set to one. The contents of this field shall be used
by implementations instead of the corresponding field inthe LVID.

H

Number of non-parent FIDs identifying Directories - Identifies the number of directories on the
volume, plus the root directory. The count does not include FIDs with the deleted bit set to one.

The contents of this field shall be used by implementations instead of the corresponding field in the
LVID.

Min UDF Read Version - Defined in 2.2.6. The contents of this field shall be used by
implementations instead of the corresponding field in the Logical Volume Inegrity Descriptor

(LVID).

Min UDF Write Version - Defined in 2.2.6. The contents of this field shall be used by
implementations instead of the corresponding field in the LVID.

Max UDF Write Version - Defined in 2.2.6. The contents of this field shall be used by
implementations instead of the corresponding field in the LVID.

Implementation Use - If non-zero in length, shall begin with a Entity ID identifying the usage of the
remainder of the Implementation Use area.

VAT Entry - VAT entry n shall identify the logical block number of the virtual block n. An entry of
#FFFFFFFF indicates that the virtual sector is currently unused. The LBN specified is located in the
partition identified by the partition map entry. The number of entries in the table can be determined
fromthe VAT filesize inthe ICB:

UDF 2.00 30 April 3, 1998

Number of entries (N) = (Information Length- L HD) / 4.

2.2.11 Sparing Table

Certain disk/drive systems do not perform defect management (eg. CD-RW). To provide an
apparent defect-free space for these systems. Certain media can only be written in groups of sectors
(“packets’), further complicating relocation: a whole packet must be relocated rather than only the
sectors being written. To address this issue a sparable partition is identified in the partition map,
which further identifies the location of the sparing tables. The sparing table identifies relocated
areas on the media. Sparing tables are identified by a sparable partition map. Sparing tables shall
not be recorded on disk/drive systems that perform defect management.

Sparing Tables point to space allocated for sparing and contains a list of mappings of defective
sectorsto their replacements. Separate copies of the sparing tables shall be recorded in separate
packets. All instances of the sparing table shall be kept up to date.

Partitions map logical space to physical space. Normally, thisis alinear mapping where an offset
and a length is specified. A sparable partition is based on this mapping, where the offset and length
of a partition within physical space is specified by a partition descriptor. The sparing table further
specifies an exception list of logical to physical mappings. All mappings are one packet in length.
The packet size is specified in the sparable partition map.

Available sparing areas may be anywhere on the media, either inside or outside of a partition. |If
located inside a partition, sparable space shall be marked as allocated and shall be included in the
Non-Allocatable Space List. The mapped locations should be filled in at format time; the original
locations are assigned dynamically as errors occur. Each sparing table shall be structured as shown
below.

Sparing Table layout

BP | Length Name Contents
0 16 Descriptor Tag tag=0
16 32 Sparing ldentifier EntitylD
48 2 Reallocation Table Length (=RT_L) uint16
50 2 Reserved #00 bytes
52 4 Sequence Number Uint32
56 8*RT_L Map Entry Map Entries

This structure may be larger than a single sector if necessary.
* Descriptor Tag
Containsa Tag Identifer of 0, ineieatingwhich indicates that the esntentsareformat of the Descriptor Tag is
not specified by +1SO-13346ECMA 167. All other fields of the Descriptor Tag shall be valid, asif the Tag
Identifier were one of the values defined by ECMA 167.
e Sparing ldentifier:
e Flags=0

UDF 2.00 April 3, 1998

w
=

UDF 2.00

e |dentifier =*UDF Spari ng Tabl e
e |dentifierSuffix isrecorded asin UDF 2.1.5.3

Reallocation Table Length
Indicates the number of entries in the Map Entry table.

Sequence Number

Contains anumber that shall be incremented each time the sparing table is updated.

Map Entry

A map entry is described in the table below. Maps shall be sorted in ascending order by the Origina
Location field.

Map Entry description

RBP | Length Name Contents
0 4 Original Location Uint32
4 4 Mapped Location uint32

Original Location

Logical Block Address of the packet to be spared. The address of a packet is the address of the first user
data block of a packet. If thisfield is #FFFFFFFF, then this entry is available for sparing. If thisfieldis
#FFFFFFFO, then the corresponding mapped location is marked as defective and should not be used for
mapping. Original Locations of #FFFFFFFL through #FFFFFFFE are reserved.

Mapped Location

Physical Block Address of active data. Requests to the original packet location areredirected to the packet
location identified here. All Mapped Location entries shall be valid, including those entries for which the
Original Location is#FFFFFFFO, #FFFFFFFF, or reserved. If the mapped location overlaps a partition,
that partition shall have that space marked as allocated and that space shall be part of the Non-Allocatable
Space list.

29 April 3,1998

oL

2.3 Part 4 - File System

231

Descriptor Tag

struct tag { [* 1SO-13346ECMA 167 4/7.2 */
Uint16 Tagldentifier;
Uint16 DescriptorVersion;
Uint8 TagChecksum;
byte Reserved;
Uint16 TagSerialNumber;
Uint16 DescriptorCRC;
Uint16 Descriptor CRCL ength;
Uint32 TagL ocation;

}

2.3.1.1 Uint1l6 TagSerialNumber

&~ lgnored.
& Reset to a unique value at volume initialization.

The TagSerial Number shall be set to a value that differs from ones previously recorded, upon
volume re-initialization. The intended use of this field is for disaster recovery. The
TagSerialNumber for all descriptors in Part 4 should be the same as the serial number used in
the associated File Set Descriptor

2.3.1.2 Uint16 Descriptor CRCLength

UDF 2.00

CRCs shall be supported and calculated for each descriptor, unless otherwise noted. The
value of thisfield shall be set to: (Size of the Descriptor) - (Length of Descriptor Tag).
When reading a descriptor the CRC should be validated.

22 April 3,1998

oo

2.3.2 File Set Descriptor
struct FileSetDescriptor { /* 1SO 13346ECMA 167 4/14.1*/

struct tag DescriptorTag;
struct timestamp RecordingDateandTime;
Uint16 Interchangel evel;
Uint16 M aximumlnter changel evel;
Uint32 CharacterSetList;
Uint32 MaximumCharacter SetList;
Uint32 FileSetNumber;
Uint32 FileSetDescriptorNumber;
struct charspec L ogicalVVolumel dentifier Character Set;
dstring LogicalVolumel dentifier[128];
struct charspec FileSetCharacter Set;
dstring FileSetldentifer[32];
dstring CopyrightFileldentifier[32];
dstring AbstractFileldentifier[32];
struct long_ad RootDirectoryl CB;
struct Entityl D Domainldentifier;
struct long_ad NextExtent;
struct long_ad StreamDirectoryl CB;
byte Reserved[4832];
}
Only one FileSet descriptor shall be recorded. On WORM media, multiple FileSets may be
recorded.

The UDF provision for multiple File Setsis as follows:

» Multiple FileSets are only allowed on WORM media

* Thedefault FileSet shall be the one with the highest FileSetNumber .

* Only the default FileSet may be flagged as writable. All other FileSets in the
sequence shall be flagged HardWriteProtect (see EntitylD definition).

* No writable FileSet shall reference any metadata structures which are referenced
(directly or indirectly) by any other FileSet. Writable FileSets may, however,
reference the actual file data extents.

Within a FileSet on WORM, if all files and directories have been recorded with ICB strategy
type 4, then the DomainlI D of the corresponding FileSet Descriptor shall be marked as
HardWriteProtected.

The intended purpose of multiple FileSets on WORM is to support the ability to have
multiple archive images on the media. For example one FileSet could represent a backup of
acertain set of information made at a specific point intime. The next FileSet could represent
another backup of the same set of information made at a later point in time.

UDF 2.00 April 3, 1998

S

2.3.2.1 Uint16 Interchangel evel
e~ Interpreted as specifying the current interchange level (as specified in 1SCAEC

13346ECMA 167 4/15), of the contents of the associated file set and the restrictions
implied by the specified level.

a1 Shall be set to alevel of 3.

An implementation shall enforce the restrictions associated with the specified current
Interchange Level.

2.3.2.2 Uint16 Maximumlnterchangel evel
& Interpreted as specifying the maximum interchange level of the contents of the

associated file set. This value restricts to what the current Interchange Level field
may be set.

e Shall be set to level 3.

2.3.2.3 Uint32 Character SetList
Interpreted as specifying the character set(s) specified by any field, whose contents

&
are specified to be a charspec, of any descriptor specified in Part 4 of SOAEC
13346ECMA 167 and recorded in the file set described by this descriptor.

& Shall be set to indicate support for CS0 only as defined in 2.1.2.

2.3.2.4 Uint32 MaximumCharacter SetList
&~ Interpreted as specifying the maximum supported character set in the associated file

set and the regtrictions implied by the specified level.

& Shall be set to indicate support for CS0 only as defined in 2.1.2.

2.3.2.5 struct charspec Logical Volumel dentifier Char acter Set
&~ Interpreted as specifying the d-characters allowed in the Logical Volume Identifier

field.

& Shall be set to indicate support for CS0 as defined in 2.1.2.

2.3.2.6 struct charspec FileSetCharacter Set
Interpreted as specifying the d-characters allowed in dstring fields defined in Part 4 of |

&
1SO-13346ECMA 167 that are within the scope of the FileSetDescriptor.
& Shall be set to indicate support for CS0 as defined in 2.1.2.

UDF 2.00 35 April 3, 1998

2.3.2.7 struct EntitylD Domainl dentifier

&

Interpreted as specifying a domain specifying rules on the use of, and restrictions on,
certain fields in the descriptors. If this field isSNULL thenit is ignored, otherwise the
Entity Identifier rules are followed.

This field shall indicate that the scope of this File Set Descriptor conformsto the
domain defined in this document, therefore the Implementationldentifier shall be set
to:

"*OSTA UDF Compliant"

As described in the section on Entity Identifier the IdentifierSuffix field of this
EntitylD shall contain the revision of this document for which the contents of the
Logical Volume is compatible. For more information on the proper handling of this
field see the section on Entity Identifier.

NOTE: The IdentifierSuffix field of this EntitylD contains SoftWriteProtect and
HardWriteProtect flags.

2.3.3 Partition Header Descriptor

struct PartitionHeaderDescriptor { [* 1SO-13346ECMA 167 4/14.3*/
struct short_ad UnallocatedSpaceT able;
struct short_ad UnallocatedSpaceBitmap;
struct short_ad PartitionintegrityTable;
struct short_ad FreedSpaceTable;
struct short_ad FreedSpaceBitmap;
byte Reserved[88];
}

As a point of clarification the logical blocks represented as Unallocated are blocks that are
ready to be written without any preprocessing. In the case of Rewritable media this would be
a write without an erase pass. The logical blocks represented as Freed are blocks that are
not ready to be written, and require some form of preprocessing. In the case of Rewritable
media this would be awrite with an erase pass.

NOTE: The use of Space Tables or Space Bitmaps shall be consistent across a Logical
Volume. Space Tables and Space Bitmaps shall not both be used at the same time within a
Logical Volume.

2.3.3.1 struct short_ad Partitionl ntegrityTable
Shall be set to all zeros since Partitionl ntegrityEntrys are not used.

UDF 2.00

36 April 3,1998

2.3.4 Fileldentifier Descriptor

struct FileldentifierDescriptor { —/* 1SO-13346ECMA 167 4/14.4*/
struct tag DescriptorTag;
Uint16 FileVersonNumber;
Uint8 FileCharacteristics,
Uint8 LengthofFilel dentifier;
struct long_ad- 1CB;
Uint16 LengthOflmplementationUse;
byte ImplementationUse[77 ;
char Fileldentifier[?];
byte Padding[?7];
}

The File Identifier Descriptor shall be restricted to the length of one Logical Block.

2.3.4.1 Uint1l6 FileVersonNumber
&~ Thereshall be only one version of afile as specified below with the value being set to
1.

s Shall be set to 1.

2.3.4.2 File Characteristics
The deleted bit may be used to mark afile or directory as deleted instead of removing the
FID from the directory, which requires rewriting the directory from that point to the end. If
the space for the file or directory is deallocated, the implementation shall set the ICB field to
zero, asall fieldsinaFID must be valid even if the deleted bit is set. See [4/14.4.3], note 21

and [4/14.4.5].

No two FIDs in adirectory shall have the same File |dentifier (and File Version Number,
which shall be 1), regardless of the state of the deleted bits of those FIDs. See [4/8.6]. Note:
| mplementations should re-use FIDs with the deleted bit set to one and ICBs set to zero to
avoid growing the size of the directory.

When deleting a File Identifier Descriptor an implementation may change the Compression
ID to OXFE and set the next four bytes, or to OXFF and set the next eight bytes of the
identifier to the byte offset of the FID within the directory as a Uint32 or Uint64 value. L_Fl
shall be set to 5 or 9. During scans of the directory, FIDs with a compression ID of OxFE and
OXFF may be ignored.

UDF 2.00 37 April 3, 1998

2.3.4.3 struct long ad ICB
The Implementation Use bytes of the long ad in all File Identifier Descriptors shall be used
to storethe UDF Unigue ID for the file and directory namespace.

UDF Unique ID
RBP | Length Name Contents
0 2 Reserved bytes (= #00)
2 4 UDF Unique ID Uint32

Section 3.2.1Logical Volume Header Descriptor describes how UDF Unigue ID field in
| mplementation Use bytes of the long ad in the File Identifier Descriptor and the Uniguel D
field in the File Entry and Extended File Entry are set.

2.3:4.22.3.4.4 Uint1l6 Lengthof-lmplementationUse
e Shall specifiyspecify the length of the ImplementationUse field.

& Shall specifiyspecify the length of the ImplementationUse field. This field may be |
ZERO, indicating that the ImplementationUse field has not been used.

When writing a File Identifier Descriptor to write-once media, to ensure that the Descriptor
Tag field of the next FID will never span ablock boundary, if there are less than 16 bytes
remaining in the current block after the FID, the length of the FID shall be increased (using
the Implementation Use field) enough to prevent this. The CRC length may be set to less
than the size of the FID minus 16 (to not include the Implementation Use area).

23432345 byte ImplementationUse |
&~ |If the LengthoflmplementationUse field is non ZERO then the first 32 bytes of this
field shall be interpreted as specifying the implementation identifier EntitylD of the
implementation which last modified the File Identifier Descriptor.

& If the Lengthofl mplementationUse field is non ZERO then the first 32 bytes of this
field shall be set to the implementation identifier EntitylD of the current
implementation.

NOTE: For additional information on the proper handling of this field refer to the section on
Entity Identifier.

Thisfield allows an implementation to identify which implementation last created and/or
modified a specific File Identifier Descriptor .

UDF 2.00 29 April 3, 1998

0

2.3.5

ICB Tag

struct icbtag { [* 1SO-13346ECMA 167 4/14.6 */
Uint32 PriorRecordedNumberofDirectEntries;
Uint16 Strategy Type;
byte StrategyParameter[2];
Uint16 NumberofEntries;
byte Reserved;
Uint8 FileType;
Lb addr Parentl CBLocation;
Uint16 Flags;

}

2.3.5.1 Uint16 StrategyType

&~ The contents of this field specifies the ICB strategy type used. For the purposes of
read access an implementation shall support strategy types 4 and 4096.

= Shall be set to 4 or 4096.

NOTE: Strategy type 4096, which is defined in the appendix, is intended for primary use on
WORM media, but may also be used on rewritable and overwritable media

2.3.5.2 Uint8 FileType

As apoint of clarification a value of 5 shall be used for a standard byte addressable file, not
0.

2.3.5.3 Parentl CBL ocation

The use of thisfield by-is optional.

NOTE: InS©-13346ECMA 167-4/14.6.7 it statesthat “If this field contains O, then no such
ICB is specified.” Thisisaflaw inthe SO standard in that an implementation could store an
ICB at logical block address 0. Therefore, if you decide to use this field, do not store an ICB
at logical block address 0.

2.3.5.4 Uint16 Flags

UDF 2.00

Bits 0-2: These bits specify the type of allocation descriptors used. Refer to the section on
Allocation Descriptors for the guidelines on choosing which type of allocation descriptor to
use.

Bit 3 (Sorted):
&~ For OSTA UDF compliant media this bit shall indicate (ZERO) that directories may
be unsorted.

a1 Shall be set to ZERO.

20 April 3,1998

oI

UDF 2.00

Bit 4 (Non-relocatable):

&~ For OSTA UDF compliant media this bit may indicate (ONE) that the file is non-
relocatable. An implementation may reset this bit to ZERO to indicate that the file is
relocatable if the implementation can not assure that the file will not be relocated.

a1 Should be set to ZERO.

Bit 9 (Contiguous):

¢~ For OSTA UDF compliant media this bit may indicate (ONE) that the file is
contiguous. An implementation may reset this bit to ZERO to indicate that the file
may be non-contiguous if the implementation can not assure that the file is
contiguous.

& Should be set to ZERO.

Bit 11 (Transformed):

& For OSTA UDF compliant mediathis bit shall indicate (ZERO) that no
transformation has taken place.

& Shall be set to ZERO.

The methods used for data compression and other forms of data transformation might be
addressed in a future OSTA document.

Bit 12 (Multi-versions):
&~ For OSTA UDF compliant media this bit shall indicate (ZERO) that multi-versioned
files are not present.

& Shall be set to ZERO.

AO April 3,1998

2.3.6 FileEntry

struct FileEntry { [* 1SO-13346ECMA 167 4/14.9 */
struct tag DescriptorTag;
struct icbtag ICBTag;
Uint32 Uid;
Uint32 Gid;
Uint32 Permissions;
Uint16 FileLinkCount;
Uint8 RecordFor mat;
Uint8 RecordDisplayAttributes;
Uint32 RecordL ength;
Uint64 InformationL ength;
Uint64 L ogicalBlocksRecorded;

struct timestamp AccessTime;
struct timestamp ModificationTime;
struct timestamp AttributeTime;

Uint32 Checkpoint;

struct long_ad ExtendedAttributel CB;

struct EntitylD—— I mplementationl dentifier;
Uinte4 Uniquel D,

Uint32 L engthofExtendedAttributes;
Uint32 LengthofAllocationDescriptors,
byte ExtendedAttributes] ?4];

byte AllocationDescriptors 7;

}

NOTE: Thetotal length of a FileEntry shall not exceed the size of one logical block.

2.3.6.1 Uint8 RecordFor mat;
&~ For OSTA UDF compliant media this bit shall indicate (ZERO) that the structure of
the information recorded in the file is not specified by this field.

a1 Shall be set to ZERO.

2.3.6.2 Uint8 RecordDisplayAttributes,
&~ For OSTA UDF compliant media this bit shall indicate (ZERO) that the structure of
the information recorded in the file is not specified by this field.

& Shall be set to ZERO.
2.3.6.3 Uint8 RecordLength;

&~ For OSTA UDF compliant media this bit shall indicate (ZERO) that the structure of
the information recorded in the file is not specified by this field.

UDF 2.00 41 April 3, 1998

-1 Shall be set to ZERO.

2.3.6.4 Uint64 | nfor mationL ength

In most cases, the | nformationLength can be reconstructed during a recovery operation by
finding the sum of the lengths of each of the allocation descriptors. However, space may be
allocated after the end of the file (identified as a “file tail.”) As allocated and unrecorded
space is alegal part of afile, using the allocation descriptors to determine information length
will fail if the next to last allocation descriptor for the file identifies 2730 - block size bytes,
or if the next to last allocation descriptor is an integral multiple of the block size and the last
alocation descriptor is not contiguous with the next to last allocation descriptor.

2.3.6.5 Uint64 L ogicalBlocksRecor ded

For files and directories with embedded data the value of this field shall be ZERO.

2.2.:6:42.3.6.6_struct EntitylD I mplementationl dentifier;

Refer to the section on Entity | dentifier.

2.3:6:52.3.6.7_Uint64 Uniquel D

UDF 2.00

For the root directory of afile set thisvalue shall be set to ZERO.

Section 3.2.1Logical Volume Header Descriptor describes how the UDF Unique ID field in

the Implementation Use bytes of the long ad in the File Identifier Descriptor and the
Uniquel D file in the File Entry and Extended File Entry are set.

A2 April 3,1998

L

2.3.7

Unallocated Space Entry

struct UnallocatedSpaceEntry { —/* 1SO-13346ECMA 167 4/14.11 */
struct tag DescriptorTag;
struct icbtag ICBTag;
Uint32 LengthofAllocationDescriptors;
byte AllocationDescriptors 7;
}

NOTE: The maximum length of an UnallocatedSpaceEntry shall be one Logical Block.

2.3.7.1 byte AllocationDescriptors

2.3.8

Only Short Allocation Descriptors shall be used.

NOTE: The upper 2 hits of the extent length field in allocation descriptors specify an extent
type (1SO-13346ECMA 167 4/14.14.1.1). For the allocation descriptors specified for the
UnallocatedSpaceEntry the type shall be set to a value of 1 to indicate extent allocated but
not recorded, or shall be set to a value of 3 to indicate the extent is the next extent of
allocation descriptors. This next extent of allocation descriptors shall be limited to the
length of one Logical Block.

AllocationDescriptors shall be ordered sequentially in ascending location order. No
overlapping AllocationDescriptors shall exist in the table. For example, ad.location = 2,
ad.length = 2048 (logical block size = 1024) then nextad.location = 3 is not allowed.
Adjacent AllocationDescriptors shall not be contiguous. For example ad.location = 2,
ad.length = 1024 (logical block size = 1024), nextad.location = 3 is not allowed and would
instead be a single AllocationDescriptor, ad.location = 2, ad.length = 2048. The only case
where adjacent AllocationDescriptors may be contiguous is when the ad.length of one of the
adjacent AllocationDescriptors is equal to the maximum AllocationDescriptors length.

Space Bitmap Descriptor

struct SpaceBitmap { [* }1SO-13346ECMA 167 4/14.11*/
struct Tag DescriptorTag;
Uint32 NumberOfBits,
Uint32 NumberOfBytes;
byte Bitmap[?];
}

2.3.8.1 struct Tag Descriptor Tag

UDF 2.00

The calculation and maintenance of the DescriptorCRC field of the Descriptor Tag for the
SpaceBitmap descriptor is optional. If the CRC is not maintained then both the
Descriptor CRC and Descriptor CRCLength fields shall be ZERO.

43 April 3,1998

2.3.9 Partition Integrity Entry

struct PartitionlntegrityEntry { —/* }1SO-13346ECMA 167 4/14.13 */
struct tag DescriptorTag;
struct icbtag ICBTag;
struct timestamp RecordingTime;
Uint8 Integrity Type;
byte Reserved[175];
struct EntitylD-—— I mplementationl dentifier;
byte I mplementationUse[256];
}

With the functionality of the Logical Volume Integrity Descriptor this descriptor is not
needed, therefore this descriptor shall not be recorded.

2.3.10 Allocation Descriptors
When constructing the data area of afile an implementation has several types of allocation

descriptors from which to choose. The following guidelines shall be followed in choosing the proper
allocation descriptor to be used:

Short Allocation Descriptor - For aLogical Volume that resides on a single Volume with no
intent to expand the Logical Volume beyond the single volume Short Allocation Descriptors
should be used. For example aLogical VVolume created for a stand alone drive.

NOTE: Refer to section 2.2.2.2 on the MaximuminterchangelLevel.

Long Allocation Descriptor - For aLogical Volume that resides on a single Logical Volume
with intent to later expand the Logical Volume beyond the single volume, or a Logical
Volume that resides on multiple Volumes Long Allocation Descriptors should be used. For
example aLogical Volume created for a jukebox.

NOTE: Thereis abenefit of using Long Allocation Descriptors even on a single volume,
which is the support of tracking erased extents on rewritable media. See section 2.3.10.1 for
additional information.

For both Short and Long Allocation Descriptors, if the 30 least significant bits of the ExtentLength
field is 0, then the 2 most significant bits shall be O.

Allocation Descriptors identifying virtual space shall have an extent length of the block size or less.
Allocation descriptors identifying file data, directories, or stream data shall identify physical space.

| CBs recorded in virtual space shall use long_ad allocation descriptors to identify physical space.
The use of short_ad allocation descriptors would identify file datain virtual space if the ICB were in
virtual space.

Descriptors recorded in virtual space shall have the virtual logical block number recorded in the Tag
Location field.

UDF 2.00 AN April 3, 1998

2.3.10.1 Long Allocation Descriptor

struct long_ad { [* 1SO-13346ECMA 167 4/14.14.2 */
Uint32 ExtentLength;
Lb addr ExtentLocation;
byte I mplementationUse[6];

}

To alow use of the ImplementationUse field by UDF and also by implementations the

following structure shall be recorded within the 6 byte Implementation Use field.

struct ADI npUse

{
Uint16 fl ags;

byte inmpUse[4];

/*

* ADI npUse Flags (NOTE: bits 1-15 reserved for future use by UDF)
*/

#defi ne EXTENTEr ased (0x01)

In the interests of efficiency on Rewritable media that benefits from preprocessing, the
EXTENTErased flag shall be set to ONE to indicate an erased extent. This applies only to
extents of type not recorded but allocated.

2.3.11 Allocation Extent Descriptor

struct AllocationExtentDescriptor {— [* 1SO-13346ECMA 167 4/14.5*/
struct tag DescriptorTag;
Uint32 PreviousAllocationExtentL ocation;
Uint32 LengthOfAllocationDescriptors;

}

NOTE:. AllocationDescriptor extents shall be a maximum of one logical block in length.
2.3.11.1 Uint12 PreviousAllocationExtentL ocation
&~ The previous allocation extent location shall not be used-as specified-below,

& Shall be set to 0.

UDF 2.00 45 April 3, 1998

2.3.12 Pathname
2.3.12.1 Path Component

struct PathComponent { [* 1SO-13346ECMA 167 4/14.16.1 */
Uint8 ComponentType;
Uint8 Lengthof Component|dentifier;
Uint16 ComponentFileVersonNumber;
char Componentldentifier|];

}

2.3.12.1.1 Uintl6 ComponentFileVersonNumber
&~ Thereshall be only one version of afile as specified below with the value being set to
ZERO.

V-1 Shall be set to ZERO.

2.4 Part 5- Record Structure

Record structure files shall not be created. If they are encountered on the media and they are not
supported by the implementation they shall be treated as an uninterpreted stream of bytes.

UDF 2.00 A6 April 3, 1998

o

3. System Dependent Requirements
3.1 Part 1- General

3.1.1 Timestamp

struct timestamp { [* 1SO-13346ECMA 167 1/7.3*/

Uint16
Uint16
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8

}

3.1.1.1 Uint8
v

3.1.1.2 Uint8
v

3.1.1.3 Uint8
&

UDF 2.00

TypeAndTimezone;

Year;

Month;

Day;

Hour;

Minute;

Second;

Centiseconds;
HundredsofM icroseconds,
Microseconds;

Centiseconds;
For operating systems that do not support the concept of centiseconds the
implementation shall ignore this field.

For operating systems that do not support the concept of centiseconds the
implementation shall set this field to ZERO.

HundredsofMicr oseconds;
For operating systems that do not support the concept of hundreds of
Microseconds the implementation shall ignore this field.

For operating systems that do not support the concept of a hundreds of
Microseconds the implementation shall set thisfield to ZERO.

Microseconds,
For operating systems that do not support the concept of microseconds the
implementation shall ignore this field.

For operating systems that do not support the concept of microseconds the
implementation shall set this field to ZERO.

N7 April 3,1998

3.2 Part 3-Volume Structure

3.2.1 Logical Volume Header Descriptor

struct LogicalVolumeHeaderDesc { [* 1SO-13346ECMA 167 4/14.15*/
Uint64 ——Uniquel D,

bytes ——reserved[24]

—}
3.2.1.1 Uint64 UniquelD

Thisfield contains the next Uniquel D value which should be used. The field isinitialized to 16, and

it monotonically increases with each assignment described below. Whenever the lower 32-bits of
this value reach #FFFFFFFF, the upper 32-bits are incremented by 1, as would be expected for a 64-
bit value, but the lower 32-bits “wrap” to 16 (theinitialization value). This behavior supports Mac™
OS which uses an |D number space of 16 through 2°32 - 1 inclusive, and will not cause problems for
other platforms.

Uniquel D is used whenever a new file or directory is created, or another name is linked to an
existing file or directory. The File Identifier Descriptors and File Entries/Extended File Entries used
for a stream directory and named streams associated with a file or directory do not use UniquelD;
rather, the unique I D fields in these structures take their value from the Uniquel D of the File
Entry/Extended File Entry of the file/directory the streams are associated with.

When afile or directory is created, this Uniquel D is assigned to the Uniquel D field of the File
Entry/Extended File Entry, the lower 32-bits of Uniquel D are assigned to UDFUniquelD in the
| mplementation Use bytes of the long_ad in the File Identifier Descriptor (see 2.3.4.2), and
Uniquel D is incremented by the policy described above.

When anameis linked to an existing file or directory, the lower 32-bits of NextUniquelD are
assigned to UDFUniguel D in the lmplementation Use bytes of the long ad in the File Identifier
Descriptor (see 2.3.4.2), and Uniguel D is incremented by the policy described above.

The lower 32-bits shall be the same in the File Entry/Extended File Entry and itsfirst File |dentifier
Descriptor, but they shall differ in subseguent FIDs.

All UDF implementations shall maintain the UDFUniquel D in the FID and Uniqguel D in the FE/EFE
as described in this section. The LVHD in aclosed Logical Volume Integrity Descriptor shall have a
valid Uniquel D.

UDF 2.00 April 3, 1998

&

3.3 Part 4 - File System
3.3.1 Fileldentifier Descriptor

struct FileldentifierDescriptor { —* 1SO-13346ECMA 167 4/14.4 */ |
struct tag DescriptorTag;
Uint16 FileVersionNumber;
Uint8 FileCharacteristics,
Uint8 LengthofFilel dentifier;
struct long_ad- ICB,;
Uint16 Lengthofl mplementationUse;
byte I mplementationUse[77];
char Fileldentifier[7];
byte Padding[77];
}

NOTE: All UDF directories shall include a File Identifier Descriptor that indicates the
location of the parent directory. The File Identifier Descriptor describing the parent
directory shall be the first File Identifier Descriptor recorded in the directory. The parent
directory of the Root directory shall be Root, as stated in 1SO-13346ECMA 167-4, section |
8.6

3.3.1.1 Uint8 FileCharacteristics
The following sections describe the usage of the FileCharacteristics under various operating
systems.

3.3.1.1.1 MSDOS, 052, Windows 95, Windows NT, Macintosh
&~ 1f Bit O isset to ONE, the file shall be considered a "hidden" file.
If Bit 1 is set to ONE, thefile shall be considered a "directory."
If Bit 2 is set to ONE, the file shall be considered "deleted.”
If Bit 3 is set to ONE, the ICB field within the associated Fileldentifier structure
shall be considered as identifying the "parent” directory of the directory that this
descriptor isrecorded in

e If the file is designated as a"hidden" file, Bit O shall be set to ONE.
If the file is designated as a "directory,” Bit 1 shall be set to ONE.
If the file is designated as "deleted,” Bit 2 shall be set to ONE.

3.3.1.1.2 UNIX

Under UNIX these bits shall be processed the same as specified in 3.3.1.1.1., except
for hidden files which will be processed as normal non-hidden files.

UDF 2.00 49 April 3,1998

3.3.2 ICB Tag

struct icbtag { [* 1SO-13346ECMA 167 4/14.6 */
Uint32 PriorRecordedNumberofDirectEntries;
Uint16 Strategy Type;
byte StrategyParameter[2];
Uint16 NumberofEntries;
byte Reserved;
Uint8 FileType;
Lb addr Parentl CBLocation;
Uint16 Flags;
}

3.3.2.1 Uint16 Flags

3.3.2.1.1 MSDOS, 052, Windows 95, Windows NT
Bits6 & 7 (Setuid & Setgid):
&~ lgnored.

& In the interests of maintaining security under environments which do support these
bits; bits 6 and 7 shall be set to ZERO if any one of the following conditions are true :

A fileis created.
The attributes/permissions associated with a file, are modified .

A fileiswritten to (the contents of the data associated with a file are modified

)-

An Extended Attribute associated with the file is modified.

A stream associated with afile is modified.

Bit 8 (Sticky):

&~ lgnored.

a1 Shall be set to ZERO.

Bit 10 (System):
&~ Mapped to the MS-DOS/ OS/2 system bit.

& Mapped from the MS-DOS / OS/2 system bit.

UDF 2.00

5N April 3,1998

3.3.2.1.2 Macintosh
Bits6 & 7 (Setuid & Setgid):
&~ lgnored.

& In the interests of maintaining security under environments which do support these
bits; bits 6 and 7 shall be set to ZERO if any one of the following conditions are true :

« Afileiscreated.
« The attributes/permissions associated with a file, are modified .

« Afileiswritten to (the contents of the data associated with afile are modified

).

+ An Extended Attribute associated with the file is modified.

+ A stream associated with afile is modified.

Bit 8 (Sticky):
&~ lgnored.

a1 Shall be set to ZERO.

Bit 10 (System):
&~ lgnored.

& Shall be set to ZERO.
3.3.2.1.3 UNIX
Bits 6, 7 & 8 (Setuid, Setgid, Sticky):
These bits are mapped to/from the corresponding standard UNIX file system bits.

Bit 10 (System):
&~ lgnored.

& Shall be set to ZERO upon file creation only, otherwise maintained.

UDF 2.00 April 3, 1998

ol
=

3.3.3 FileEntry

struct FileEntry { [* 1SO-13346ECMA 167 4/14.9 */
struct tag DescriptorTag;
struct icbtag ICBTag;
Uint32 vid;
Uint32 Gid;
Uint32 Permissions;
Uint16 FileLinkCount;
Uint8 RecordFormat;
Uint8 RecordDisplayAttributes;
Uint32 RecordLength;
Uinte4 InformationL ength;
Uint64 LogicalBlocksRecorded,;

}

struct timestamp AccessTime;
struct timestamp ModificationTime;
struct timestamp AttributeTime;

Uint32 Checkpoint;

struct long_ad ExtendedAttributel CB;

struct EntitylD—— I mplementationl dentifier;

Uinte4 Uniquel D,

Uint32 L engthofExtendedAttributes;
Uint32 LengthofAllocationDescriptors,
byte ExtendedAttributes] ?4];

byte AllocationDescriptors 7;

NOTE: Thetotal length of a FileEntry shall not exceed the size of one logical block.

3.3.3.1 Uint32 Uid

&

For operating systems that do not support the concept of a user identifier the
implementation shall ignorethis field. For operating systems that do support this
field avalue of 2% - 1 shall indicate an invalid UID, otherwise the field contains a
valid user identifier.

For operating systems that do not support the concept of a user identifier the
implementation shall set thisfield to 2= - 1 to indicate an invalid UID, unless
otherwise specified by the user.

3.3.3.2 Uint32 Gid

UDF 2.00

&

For operating systems that do not support the concept of a group identifier the
implementation shall ignore thisfield. For operating systems that do support this
field avalue of 2% - 1 shall indicate an invalid GID, otherwise the field contains a
valid group identifier.

=) April 3,1998

& For operating systems that do not support the concept of a group identifier the
implementation shall set thisfield to 2% - 1 to indicate an invalid GID, unless
otherwise specified by the user.

3.3.3.3 Uint32 Permissions;

/* Definitions: */
/* Bit for

~ e~~~ —

a File

*

* Execute May execute file

* Wite May change file contents
* Read May exam ne file contents
* ChAttr My change file attributes My
* Delete My delete file

#defi ne OTHER Execute 0x00000001

#define OTHER Wite
#defi ne OTHER Read
#define OTHER _ChAttr
#defi ne OTHER Del et e

#def i ne GROUP_Execute

#define GROP Wite
#defi ne GROUP_Read

#defi ne GROUP_ChAttr
#defi ne GROUP_Del et e

#defi ne OMER_Execut e

#define OWNER_Wite
#defi ne OMER_Read
#defi ne OAWNER_ChAttr
#defi ne OMER _Del et e

The concept of permissions which deals with security is not completely portable between operating
systems. This document attempts to maintain consistency among implementations in processing the

0x00000002
0x00000004
0x00000008
0x00000010

0x00000020
0x00000040
0x00000080
0x00000100
0x00000200

0x00000400
0x00000800
0x00001000
0x00002000
0x00004000

May
May

a Directory

search directory

create and delete files */
list files in directory */

change dir attributes
del ete directory

permission bits by addressing the following basic issues:

1. How should an implementation handle Owner, Group and Other permissions when the

operating system has no concept of User and Group 1ds?

2. How should an implementation process permission bits when encountered, specifically
permission bits that do not directly map to an operating system supported permission bit?

3. What default values should be used for permission bits that do not directly map to an
operating system supported permission bit when creating a new file?

User, Group and Other

In general, for operating systems that do not support User and Group Ids the following algorithm
should be used when processing permission bits:

When reading a specific permission, the logical OR of all three (owner, group, other)
permissions should be the value checked. For example afile would be considered writable if
the logical OR of OWNER_Write, GROUP_Write and OTHER_Write was equal to one.

When setting a specific permission the implementation should set all three (owner, group,
other) sets of permission bits. For example to mark afile aswritable the OWNER_Write,

GROUP_Write and OTHER_Write should all be set to one.

Default Permission Values

UDF 2.00

April 3,1998

For the operating systems covered by this document the following table describes what default
values should be used for permission hits that do not directly map to an operating system supported
permission bit when creating a new file.

Permission File/Directory Description DOS 0S2 | Win Win Mac UNIX
95 NT oS
Read file Thefile may beread 1 1 1 1 1 8]
Read directory Thedirectory may beread, only if the 1 1 1 1 1 U
directory isalso marked as Execute.
Write file Thefil€ s contents may be modified U U U U U U
Write directory Files or subdirectories may be renamed, U U U U U U
added, or deleted, only if the directory
is also marked as Execute.
Execute file Thefile may be executed. 0 0 0 0 0 8]
Execute directory The directory may be searched for a 1 1 1 1 1 U
specific file or subdirectory.
Attribute file Thefil€ s permissions may be changed. 1 1 1 1 1 Note 1l
Attribute directory The directory’ s permissions may be 1 1 1 1 1 Note 1
changed.
Delete file Thefile may be deleted. Note2 | Note2 | Note | Note2 | Note2 | Note2
2
Delete directory Thedirectory may be deleted. Note2 | Note2 | Note | Note2 | Note2 | Note2
2

U - User Specified, 1 - Set, 0 - Clear

NOTE 1: Under UNIX only the owner of afile/directory may change its attributes.

NOTE 2: The Delete permission bit should be set based upon the status of the Write permission bit.
Under DOS, OS/2 and Macintosh, if afile or directory is marked as writable (Write permission set)
then the file is considered deletable and the Delete permission bit should be set. If afile isread only
then the Delete permission bit should not be set. This appliesto file create as well as changing
attributes of afile.

Processing Permissions

I mplementation shall process the permission bits according to the following table which describes
how to process the permission bits under the operating systems covered by this document. The table
addresses the issues associated with permission bitsthat do not directly map to an operating system
supported permission bit.

Permission File/Directory Description DOS | OS2 | Win | Win | Mac | UNIX
95 NT oS

Read file Thefile may beread E E E E E E

Read directory The directory may beread E E E E El E

Write file Thefil€ s contents may be modified E E E E E E

Write directory Files or subdirectories may be created, E E E E E E
deleted or renamed

Execute file Thefile bmay be executed. | | | | | E

Execute directory The directory may be searched for a E E E E E E
specific file or subdirectory.

Attribute file Thefile' s permissions may be changed. E E E E E E

Attribute directory The directory’ s permissions may be E E E E E E
changed.

Deete file The file may be del eted. E E E E E E

Déete directory The directory may be del eted. E E E E E E

E - Enforce, | - Ignore

UDF 2.00 54 April 3,1998

The Execute bit for a directory, sometimes referred to as the search bit, has special meaning. This
bit enables a directory to be searched, but not have its contents listed. For example assume a
directory called PRIV ATE exists which only has the Execute permission and does not have the Read
permission bit set. The contents of the directory PRIVATE can not be listed. Assumethereisafile
within the PRIVATE directory called README. The user can get access to the README file since
the PRIVATE directory is searchable.

To be ableto list the contents of a directory both the Read and Execute permission bits must be set
for the directory. To be able to create, delete and rename a file or subdirectory both the Write and
Execute permission bits must be set for the directory.

_To get a better understanding of the Execute bit for adirectory reference any UNIX book that covers
file and directory permissions. The rules defined by the Execute bit for adirectory shall be enforced
by all implementations._The exception to this rule applies to Macintosh implementations. A
Macintosh implementation may ignore the status of the Read bit in determining the accessibility of a

directory

NOTE: To be able to delete afile or subdirectory the Delete permission bit for the file or
subdirectory must be set, and both the Write and Execute permission bits must be set for the
directory it occupies.

UDF 2.00 [~ April 3, 1998

3.3.3.4 -Uint64 UniquelD

NOTE: For some operating systems (i.e. Macintosh) this value needs to be less than the max value
of alnt32 (2= - 1). Under the Macintosh operating system this value is used to represent the
Macintosh directory/file ID. Therefore an implementation should attempt to keep this value less
than the max value of aInt32 (2 - 1). The values 1-15 shall be reserved for the use of Macintosh
implementations.

3.3.3.5 bhyte Extended Attributes

Certain extended attributes should be recorded in this field of the FileEntry for performance reasons.
Other extended attributes should be recorded in an ICB pointed to by the field

ExtendedAttributel CB. In the section on Extended Attributes it will be specified which extended
attributes should be recorded in this field.

3.3.4 Extended Attributes
In order to handle some of the longer Extended Attributes (EAs) which may vary in length, the
following rules apply to the EA space.

1. All EAswith an attribute length greater than or equal to alogical block shall be block
aligned by starting and ending on a logical block boundary.

2. Smaller EAs shall be constrained to an attribute length which is a multiple of 4 bytes.

3. FheEach Extended Attribute space shall appear as a single contiguous logical space
constructed as follows:

}SOHEC13346ECMA 167 EAS

Non block aligned | mplementation Use EAs
Block aligned Implementation Use EAs
Application Use EAs

NOTE: There may exist 2 Extended Attribute spaces per file, one embeded in the File Entry
or Extended File Entry and the other as a separate space referenced by the Extended Attribute
|CB address in the File Entry or Extended File Entry. Each Extended Attribute space, if
present, must have its own Extended Attribute Header Descriptor (see the next section).

3.3.4.1 Extended Attribute Header Descriptor
struct ExtendedAttributeHeaderDescriptor { [* 1SO-13346ECMA 167 4/14.10.1 */

struct tag DescriptorTag;
Uint32 ImplementationAttributesL ocation;
Uint32 ApplicationAttributesL ocation;

UDF 2.00 A April 3, 1998

tee~ A value in one of the attributes associated-with-the-location fields highlighted above
do-notexstthenthe value ot-thelocatton-tield-shalbpotntegual to the byte-afterthe-extended

amcibuteor’

grester than the length of the EA space shall be interpreted as an indication that the

corresponding attribute does not exist.

& If an attribute associated with one of the location fields

highlighted above does not exist, then the value of the corresponding location field

shall be set to #FFFFFFFF."

3.3.4.2 Alternate Permissions

struct AlternatePermissionsExtendedAttribute { /* +SO-13246ECMA 167 4/14.10.4*/

uint32

Uint8

AttributeType;

byte

AttributeSubtype;

uint32

Reserved[3];

Uint1l6

AttributelL ength;

Ownerldentification;

Uint16
Uint16

Groupldentification;
Permission;

}

This structure shall not be recorded.

3.3.4.3 FileTimes Extended Attribute
struct FileTimesExtendedAttribute {
Uint32

[* 1SO-13346ECMA 167 4/14.10.5*/

Uint8

AttributeType;

byte

AttributeSubtype;

uint32

Reserved[3];

uint32

AttributelL ength;

Datal_ength;

Uint32
byte

FileTimeExistence;
FileTimes;

3343233431 byte FileTimes

M-acintosh-OS

e~ Slf thisfield contains a file creation time it shall be interpreted as the creation

time of the associated file. If the main File Entry is an Extended File Entry,

UDF 2.00

April 3,1998

thefile creation time in this structure shall be ignored and the file creation
time from the main File Entry shall be used.

= Shall-beset-tolf the main File Entry is an Extended File Entry, this structure
shall not be recorded with afile creation time-of-the-associated-fHe.

If the main File Entry is not an Extended File Entry and the File Times Extended
Attribute does not exist or does not contain the file creation time then aMacintoshn
implementation shall use the Modification Time field of the File Entry to represent
thefile creation time.

OtherOS
Fhis-structure-need-not-berecorded-

3.3.4.4 Device Specification Extended Attribute
struct DeviceSpecificationExtendedAttribute { /* 1SO-13246ECMA 167 4/14.10.7 */

Uint32 AttributeType;

Uint8 AttributeSubtype;

byte Reserved[3];

Uint32 Attributel ength;

Uint32 ImplementationUseLength; /* (=IU_L) */
Uint32 M aj or Devicel dentification;

Uint32 MinorDevicel dentification;

byte ImplementationUse[IU_L];

}

The following paradigm shall be followed by an implementation that crestes a Device
Specification Extended Attribute associated with afile :

If and only if afile has a DeviceSpecificationExtendedAttribute associated with it, the
contents of the FileType field in the icbtag structure be set to 6 (indicating a block
special devicefile), OR 7 (indicating a character special device file).

If the contents of the FileType field in the icbtag structure do not equal 6 or 7, the
DeviceSpecificationExtendedAttribute associated with a file shall be ignored.

In the event that the contents of the FileType field in the icbtag structure equal 6 or 7,
and the file does not have a DeviceSpecificationExtendedAttribute associated with it,
access to the file shall be denied.

For operating system environments that do not provide for the semantics associated
with ablock special device file, requests to open/read/write/close afile that has the
DeviceSpecificationExtendedAttribute associated with it shall be denied.

UDF 2.00 5Q April 3, 1998

0O

All implementations shall record a developer 1D in the ImplementationUse field that
uniquely identifies the current implementation.

3.3.4.5 Implementation Use Extended Attribute
struct ImplementationUseExtendedAttribute { /* 1SO-13346ECMA 167 4/14.10.8*/

Uint32 AttributeType;

Uint8 AttributeSubtype;

byte Reserved[3];

Uint32 Attributel ength;

Uint32 ImplementationUseL ength; /* (=IU_L) */
struct Entityl D-__Implementationl dentifier;

byte ImplementationUse[IU_L];

}

The AttributeLength field specifies the length of the entire extended attribute. For variable
length extended attributes defined using the Implementation Use Extended Attribute the
Attribute Length field should be large enough to leave padding space between the end of the
Implementation Use field and the end of the Implementation Use Extended Attribute.

The following sections describe how the Implementation Use Extended Attribute is used
under various operating Systems to store operating system specific extended attributes.

The structures defined in the following sections contain a header checksumfield. This field
represents a 16-bit checksum of the Implementation Use Extended Attribute header. The
fields AttributeType through I mplementationl dentifier inclusively represent the data covered
by the checksum. The header checksum field is used to aid in disaster recovery of the
extended attribute space. C source code for the header checksum may be found in the
appendix.

NOTE: All compliant implementations shall preserve existing extended attributes
encountered on the media. Implementations shall create and support the extended attributes
for the operating system they currently support. For example, a Macintosh implementation
shall preserve any OS/2 extended attributes encountered on the media. It shall also create
and support all Macintosh extended attributes specified in this document.

3.3.45.1 All Operating Systems
3.3.45.1.1 FreeEASpace
This extended attribute shall be used to indicate unused space within the extended
attribute space. This extended attributes shall be stored as an Implementation Use
Extended Attribute whose | mplementationl dentifier shall be set to:
"*UDF FreeEASpace"

UDF 2.00 50 April 3,1998

The ImplementationUse area for this extended attribute shall be structured as follows:

FreeEASpace format
RBP | Length Name Contents
0 2 Header Checksum uintl16
2 IU L-1 | Free EA Space bytes

This extended attribute allows an implementation to shrink/grow the total size of
other extended attributes without rewriting the complete extended attribute space.
The FreeEASpace extended attribute may be overwritten and the space re-used by
any implementation who sees a need to overwriteit.

3.3.45.1.2 DVD Copyright Management Information
This extended attribute shall be used to store DVD Copyright Management
Information. This extended attribute shall be stored as an Implementation Use
Extended Attribute whose | mplementationl dentifier shall be set to:
"*UDF DVD CGMS Info"

The ImplementationUse area for this extended attribute shall be structured as follows:

DVD CGMS Info format

RBP Length Name Contents
0 2 Header Checksum Uint16
2 1 CGMS Information byte
3 1 Data Structure Type Uint8
4 4 Protection System Information bytes

This extended attribute allows DVD Copyright Management Information to be stored.
The interpretation of this format shall be defined in the DVD specification published
by the DVD Consortium (see 6.9.3). Support for this extended attribute is optional.

3.3.45.2 MS-DOS, Windows 95, Windows NT
&~ lgnored.

& Not supported. Extended attributes for existing files on the media shall be preserved.

3.3453 052

0OS/205/2 supports an unlimited number of extended attributes which shall be supperted-throughthe
use-ofstored as a named stream as defined in 3.3.8.2. To enhance performance the following -twe

I mplementation Use Extended Attributes will be created.

UDF 2.00 A0 April 3, 1998

This attribute specifies the OS2 Extended Attribute Stream (3.3.8.2) information

length. Since this value needs to be reported back to OS/2 under certain directory
operations, for performance reasons it should be recorded in the ExtendedAttributes
field of the FileEntry. This extended attribute shall be stored as an Implementation
Use Extended Attribute whose Implementationldentifier shall be set to:

"*UDF OS/2 EALength"

The ImplementationUse area for this extended attribute shall be structured as follows:

OS2EAL ength format

RBP | Length Name Contents
0 2 Header Checksum Uint16
2 4 0OS/2 Extended Attribute Length Uint32

The value recorded in the OS2ExtendedAttributeLength field shall be equal to the

Hplementationdselengthl nfor mationL ength field of the file entry for the OS2EA
extendediribote—2dream.

UDF 2.00

[0)]
=

April 3,1998

3.3.45.4 Macintosh OS
The Macintosh OS requires the use of the following four-extended attributes.

3.3.45.4.1 MacVolumelnfo
This extended attribute contains Macintosh volume information which shall be stored
as an Implementation Use Extended Attribute whose Implementationl dentifier shall
be st to:
"*UDF Mac Volumel nfo"

The ImplementationUse area for this extended attribute shall be structured as follows:

MacVolumel nfo format

RBP | Length Name Contents
0 2 Header Checksum Uintl6
2 12 Last Modification Date timestamp
14 12 Last Backup Date timestamp
26 32 Volume Finder Information Uint32

The MacVolumel nfo extended attribute shall be recorded as an extended attribute of
the root directory FileEntry.

3.3.4.5.4.2 MacFinderinfo
This extended attribute contains Macintosh Finder information for the associated file
or directory. Since this information is accessed frequently, for performance reasons it
should be recorded in the ExtendedAttributes field of the FileEntry.

The MacFinderInfo extended attribute shall be stored as an Implementation Use
Extended Attribute whose | mplementationl dentifier shall be set to:
"*UDF M ac FinderInfo"

The ImplementationUse area for this extended attribute shall be structured as follows:

MacFinderInfo format for a directory

RBP | Length Name Contents
0 2 Header Checksum uintl6
2 2 Reserved for padding (=0) uintl6
4 4 Parent Directory ID Uint32
8 16 Directory Information UDFDInfo
24 16 Directory Extended Information UDFDXInfo
UDF 2.00 62 April 3,1998

UDF 2.00

MacFinderInfo format for afile

RBP | Length Name Contents

0 2 Header Checksum uintl6

2 2 Reserved for padding (=0) uintl6

4 4 Parent Directory 1D Uint32

8 16 File Information UDFFInfo

24 16 File Extended Information UDFFXInfo
40 4 Resource Fork Data Length Uint32

44 4 Resource Fork Allocated Length Uint32

The MacFinderInfo extended attribute shall be recorded as an extended attribute of
every file and directory within the Logical Volume.

The following structures used within the MacFinderInfo structure are listed below for
clarity. For complete information on these structures refer to the Macintosh books
called "Inside Macintosh”. The volume and page number listed with each structure
correspond to a specific "Inside Macintosh” volume and page.

UDFPoint format (Volume I, page 139)

RBP | Length Name Contents
0 2 V Int16
2 2 H Int16
UDF Rect format (Volume I, page 141
RBP | Length Name Contents
0 2 Top Int16
2 2 Left Int16
4 2 Bottom Int16
6 2 Right Int16
UDFDInfo format (Volume 1V, page 105)
RBP | Length Name Contents
0 8 FrRect UDFRect
8 2 FrHags Int16
10 4 FrLocation UDFPoint
14 2 FrView Int16
UDFDXInfo format (Volume 1V, page 106)
RBP | Length Name Contents
0 4 FrScroll UDFPoint
4 4 FrOpenChain Int32
8 1 FrScript uUint8
9 1 FrXflags Uint8
10 2 FrComment Int16
12 4 FrPutAway Int32
UDFFInfo format (Volumell, page 84)
| RBP | Length | Name | Contents

AR April 3,1998

0 4 fFdType Uint32
4 4 fFdCreator Uint32
8 2 fFdFlags uintl6
10 4 fFdL ocation UDFPoint
14 2 fEdFIdr Int16
UDFF XInfo format (Volume 1V, page 105)
RBP | Length Name Contents
0 2 fFdlconlD Int16
2 6 fFdUnused bytes
8 1 fEdScript Int8
9 1 fFdXFlags Int8
10 2 fFdComment Int16
12 4 fEdPutAway Int32

NOTE: The above mentioned structures have there original Macintosh names
preceded by "UDF" to indicate that they are actually different from the original
Macintosh structures. On the mediathe UDF structures are stored little endian as
opposed to the original Macintosh structures which are in big endian formet.

UDF 2.00 April 3, 1998

R

UDF 2.00 65 April 3, 1998

A4

3.3455 UNIX
&~ lgnored.

& Not supported. Extended attributes for existing files on the media shall be
preserved.

3.3.4.6 Application Use Extended Attribute
struct ApplicationUseExtendedAttribute { [* 1SO-13346ECMA 167 4/14.10.9 */

Uint32 AttributeType;, /* = 65536 */

Uint8 AttributeSubtype;

byte Reserved[3];

Uint32 Attributel ength;

Uint32 ApplicationUseLength; /* (=AU_L) */
struct EntitylD-_ Applicationldentifier;——

byte ApplicationUse[AU_L]J;

}

The AttributeLength field specifies the length of the entire extended attribute. For variable
length extended attributes defined using the -Application Use Extended Attribute the Attribute |
Length field should be large enough to leave padding space between the end of the
ApplicationUse field and the end of the Application Use Extended Attribute.

UDF 2.00 AR April 3, 1998

The structures defined in the following section contains a header checksumfield. Thisfield
represents a 16-bit checksum of the Application Use Extended Attribute header. Thefields
AttributeType through Applicationldentifier inclusively represent the data covered by the
checksum. The header checksum field is used to aid in disaster recovery of the extended
attribute space. C source code for the header checksum may be found in the appendix.

NOTE: All compliant implementations shall preserve existing extended attributes
encountered on the media. Implementations shall create and support the extended attributes
for the operating system they currently support. For example, a Macintosh implementation
shall preserve any OS2 extended attributes encountered on the media. It shall also create
and support all Macintosh extended attributes specified in this document.

3.3.4.6.1 All Operating Systems
This extended attribute shall be used to indicate unused space within the extended attribute
space reserved for Application Use Extended Attributes. This extended attribute shall be
stored as an Application Use Extended Attribute whose Applicationldentifier shall be set to:
"*UDF FreeAppEASpace"

The ApplicationUse area for this extended attribute shall be structured as follows:

FreeAppEASpace format
RBP | Length Name Contents
0 2 Header Checksum Uint16
2 IU L-1 | Free EA Space bytes

This extended attribute alows an implementation to shrink/grow the total size of other
extended attributes without rewriting the complete extended attribute space. The
FreeAppEASpace extended attribute may be overwritten and the space re-used by any
implementation who sees a need to overwrite it.

3.3.5 Named Streams

Named streams provide a mechanism for associating related data of afile. It issimilar in concept to
extended attributes. However, named streams have significant advantages over extended attributes.
They are not as limited in length. Space management is much easier as each stream has its own
space, rather than the common space of extended attributes. Finding a particular stream does not
involve searching the entire data space, as it does for extended attributes.

Named streams are mainly intended for user data. For example, a database application may storethe
records in the default or main stream and indices in named streams. The user would then see only
one file for the database rather than many, and the application can use the various streams almost as
if they were independent files.

Named Streams are identified by an Extended File Entry. Extended File Entries are required for
files with associated named streams. Files without named streams should use Extended File Entries.

UDF 2.00 67 April 3, 1998

Files may have normal File Entries; normal File Entries would be used where backward
compatibility is desired, such as writing DVD Video discs.

Thereis a“System Sream Directory” which is the stream directory identified by the File Set
Descriptor. These streams are used to describe data related to the entire medium instead of datathat
relatesto afile. UDF defines several “system streams’ that areto be identified by the system stream

directory.

It is recommended that Named Streams be used to store metadata and application data instead of
Extended Attributes in new implementations.

UDF 2.00 A8] April 3, 1998

0O

3.3.5.1 Named Streams Restrictions

ECMA 167 3" edition defines a new File Entry that contains a field for identifying a_stream
directory. This new File Entry should be used in place of the old File Entry, and should be used for
describing the streams themselves. Old and new file entries may be freely mixed. In particular,
compatibility with old reader implementations can be maintained for certain files.

Restrictions:

The stream directory | CB field of |CBs describing stream directories or named streams shall be set
to zero. [no hierarchical streams]

Each named stream shall be identified by exactly one FID in exactly one Stream Directory. [no hard
links among named streams or files and named streams|

Each Stream Directory |CB shall be identified by exactly one Stream Directory ICB field. [no hard
links to stream directories]

Hard Links to files with named streams are allowed.

Named Streams and Stream Directories shall not have Extended Attributes.

The Unigue I D field of Named Streams and Stream Directories shall be set to zero and shall be
ignored when read. The Unigue ID of a Named Stream or Stream Directory shall be considered to
be the same as the Unique ID of the main data stream.

The UID, GID, and permissions fields of the main File Entry shall apply to all named streams
associated with the main stream. At the time of creation of a named stream the values of the UID,
GID and permissions fields of the main file entry should be used as the default values for the
corresponding fields of the named stream. | mplementations are not required to maintain or check
these fields in a named stream.

| mplementations should not present streams marked with the metadata bit set in the FID to the user.
Streams marked with the metadata bit are intended solely for the use of the file system
implementation.

The parent entry FID in a stream directory points to the main Extended File Entry, so its reference
must be counted in the Link Count field of the Extended File Entry.

Note: Thereis a potential pitfall when deleting files/directories. if the link count goes to one when a
FID is deleted, implementations must check for the presence of a stream directory. |If present, there
are no more FIDs pointing to this File Entry, so it and all associated structures must be del eted.

The modification time field of the main Extended File Entry should be updated whenever any
associated named stream is modified. The Access Time field of the main Extended File Entry
should be updated whenever any associated named stream is accessed. The SETUID and SETGID
bits of the ICB Tag flags field in the main Extended File Entry should be cleared whenever any
associated named stream is modified.

UDF 2.00 (o) April 3, 1998

The ICB for a Named Stream directory shall have afile type of 13. All named streams shall have a
file type of 5.

All systems shall make the main data stream available, even on implementations that do not
implement named streams.

3.3.5.2 System Named Streams (M etadata)

A set of named streams is defined by UDF for file system use. Some UDF named streams are
identified by the File Set Descriptor and apply to the entire file set (System Sream Directory).
Others pertain to individual files or directories and are identified by the stream directory.

All UDF named streams shall have the Metadata bit set in the File Identifier Descriptor in the Stream
Directory, unless otherwise specified in this document. All streams not generated by the file system
implementation shall have this bit set to zero.

All UDF named streams shall have afile type of 5 in the ICB identifying the stream.

The four characters * UDF are the first four characters of all UDF defined named streams in this
document. Implementations shall not use any identifier beginning with * UDF for named streams
that are not defined in this document. All identifiers for named streams beginning with *UDF are
reserved for future definition by OSTA.

3.3.6 Extended Attributes as named streams

An extended attribute may be recorded as a named stream instead. The extended attribute is
converted according to the following rules:

The stream is marked as a Metadata stream.

The EA header and Header Checksum are not recorded. If the EA included pad bytes between the
Header Checksum and the remaining data, these are also not recorded.

Any extended attribute of afile or directory can be converted to a sream of the same file or
directory by the following algorithm:

1. Create adream for the file or directory containing the extended attribute. The identifier
specified for the Entity Identifier becomes the stream name.

2. Copy the data of the extended attribute into the stream.

3. Delete the extended attribute.

UDF 2.00 70 April 3, 1998

3.3.7 UDEF Defined System Streams
This section contains the definition of UDF defined system streams.

Stream Name Stream L ocation M etadata Flag

“*UDF Unique ID Mapping Data’ | System Stream Directory (File Set Descriptor) 1
“* UDF Non-Allocatable Space” System Stream Directory (File Set Descriptor) 1
“* UDF Power Cal Table’ System Stream Directory (File Set Descriptor) 1
“* UDF Backup” System Stream Directory (File Set Descriptor) 1

Since the streams listed above have the Metadata flag set, the implementation shall not pass the
name of the stream across the “plug-in file system interface” of a platform.

3.3.7.1 UniquelD Mapping Data Stream

The Unique ID Mapping Data alows an implementation to go directly to the ICB hierarchy for the
file/directory associated with a UDFUniquel D, or to the ICB hierarchy for the directory which
contains the file/directory associated with the UDFUniquel D. Unique ID Mapping Data is stored as
anamed stream of the System Sream Directory (associated with the File Set Descriptor). The name
of this stream shall be st to:

“* UDF Unigue ID Mapping Data”

The Metadata bit in the File Characteristics field of the File Identifier Descriptor shall be set to 1to
indicate that the existence of this file should not be made known to clients of a platform’s file system
interface.

» shall be created for read-only media

» shall be created by implementations which batch write (e.g., pre-mastering tools) a volume on
write-once and rewritable media

» for implementations which perform incremental updates of volumes on write-once or rewritable
media (e.q., on-line file systems), the following rules apply:

* may be created and maintained if not present

» shall be maintained if present and volume is clean

e should be repaired and maintained, but may be deleted, if present and volume is dirty

» for theserules, avolumeisclean if either avalid Close Logical Volume Integrity Descriptor or a
valid Virtual Address Table is recorded

3.3.7.1.1 UDF UniquelD Mapping Data

UDF Unique ID M apping Data

RBP Length Name Contents
0 32 Implementation Identifier EntitylD
32 4 Flags Uint32
36 4 Mapping Entry Count (=MEC) Uint32
40 8 Reserved Bytes (= #00)
48 16*MEC | Mapping Entries | DM appingEntry

UDF 2.00 71 April 3, 1998

3.3.7.1

I mplementation Identifier isdescribed in [cross referenceto 2.1.5].

Flags are defined as follows:

Bit O, If set to ONE, shall mean UDF Unique 1D, once decremented by 16 (the value

NextUniquel D isinitialized to), can be used as an index into the array Mapping Entries.

Blank entries, if present, are al beyond the last array element with a UDF Unique ID.

Bits 1 - 31, reserved, shall be set to ZERO.

M apping Entry Count isthe size, in entries, of the array Mapping Entries.

M apping Entriesis an array of UDF Unigue |ID Mapping Entry structures. Thereisone
mapping entry for every non-stream, non-parent File Identifier Descriptor. Whenever the
volume is consistent, the array is always sorted in ascending order of UDF Unique ID.
Except as limited by the flags, blank entries are allowed anywhere in the array, and entries
are not required to have a UDF Unique | D value of one more than the preceding entry. A
blank entry has a value of ZERO in all fields.

2 UDF Uniqgue|D Mapping Entry

The contents of the stream is described by the table “UDF Unigue ID Mapping Data” which contains

some header fields before an array of “UDF Unique ID Mapping Entry.” The fields of the structures

are described below their corresponding table.

UDF 2.00

UDF Unique ID M apping Entry

RBP Length Name Contents
0 4 UDFUnigue ID Uint32
4 4 Parent Logical Block Number Uint32
8 4 Object Logical Block Number Uint32
12 2 Parent Partition Reference Number Uintl6
14 2 Object Partition Reference Number Uintl6

UDF Unique ID isthe value found in a FID for thefile or directory.

Parent L ogical Block Number isthe logical block number of the ICB identifying the
directory that contains the FID identifying the object.

Object Logical Block Number isthe logical block number of the ICB identifying this
object.

Parent Partition Reference Number is the partition reference number from the long ad of
the ICB field in the parent in the same directory containing the FID for this file or directory.

Object Partition Reference Number isthe partition reference number from the long_ad of
the ICB field in the FID with this UDFUniquel D.

72 April 3,1998

3.3.7.2 Non-Allocatable Space Stream

ECMA 167 does not provide for a mechanism to describe defective areas on media or areas not
usable due to allocation outside of the file system. The Non-Allocatable Space Sream provides a
method to describe space not usable by the file system. The Non-Allocatable Space Sream shall be
recorded only on media systems that do not do defect management (eg. CD-RW).

The Non-Allocatable Space Stream shall be generated at format time. All space indicated by the
Non-Allocatable Space Sream shall also be marked as allocated in the free space map. The Non-
Allocatable Space Sream shall be recorded as a named stream in the system stream directory of the
File Set Descriptor. The stream name shall be:

“*UDF Non-Allocatable Space”

The stream shall be marked with the attributes Metadata (bit 4 of file characteristics set to ONE) and
System (bit 10 of ICB flags field set to ONE). This stream shall have all Non-Allocatable sectors
identified by its allocation extents. The allocation extents shall indicate that each extent is allocated
but not recorded. This list shall include both defective sectors found at format time and space
alocated for sparing at format time.

3.3.7.3 Power Calibration Stream

One of the potential limitations on the effective use of the packet-write capabilities of CD-
Recordable drives is the limited number (100) of power calibration areas available on current CD-R
media. These power calibration areas are used to establish the appropriate power calibration settings
with which data can be successfully and reliably written to the CD-R disc currently in the drive. The
appropriate settings for a specific drive can vary significantly from disc to disc, between two
different drives of the same make and model, and even using the same disc, drive and system
configuration, but under different environmental conditions.

Because of this, most current CD-R drives recalibrate themselves the first time a write is attempted
after amedia change has occurred. This imposes no restriction on recording to discs using the disc-
at-once or track-at-once modes, since in each of these modes the disc will fill (either by consuming
the total available data capacity or total number of recordable tracks) in less than 100 separate
writes. When using packet-write though, the disc could be written to thousands of times over an
extended period before the disc is full.

Suppose, for instance, one wanted to incrementally back-up any new and/or modified files at the end
of each work day (though the drive might also be used intermittently to do other projects during the
day). These back-ups may require writing as little as a megabyte (or even less) each day. |If one of
the power cdlibration areas is used to calibrate the drive before writing to the disc every day, within
five months the power calibration areas will all have been used, but only a small fraction of the tota
disc capacity will have been consumed. It islikely that such aresult would be both unexpected and
unacceptable to the user of such a product.

UDF 2.00 73 April 3, 1998

The industry is attempting to provide ways to reduce the frequency with which the power calibration
area of a CD-Recordable disc must be used. At least one current CD-R drive model triesto
remember the power calibration values last used for recording data on each of a small number of
recently encountered discs. Most CD-Recordable drives provide a mechanism for the host software
to retrieve from the drive the most recent power calibration settings used by the drive to record data
on the current disc, and to restore and use such information at some future time.

The Power Calibration Table described herein would be used to sore on the disc the power
calibration information thus obtained for future use by compatible implementations. The table
consists of a header followed by alist of records containing power calibration settings which have
been used by various drives and/or hogts, under various conditions, to record data on this disc, as
well as other relevant information which may be used to determine which of the recorded calibration
settings may be appropriate for use in a future situation. While every effort has been made to
anticipate and include all necessary information to make effective use of the recorded power
calibration information possible, it is up to the individual implementation to determine if, when and
how such information will actually be used.

The Power Calibration Table shall be recorded as a system stream of the File Set Descriptor
according to the rules of 3.3.5. The name of the stream shall be as follows:

“*UDF Power Cal Table

| mplementations that do not support the Power Calibration Table shall not delete this stream.
Further, any implementation which supports and/or uses the Power Calibration Table shall not delete
or modify any records from such table which the implementation, through its use thereof, did not
clearly and specifically obsolete or update.

UDF 2.00 74 April 3, 1998

The stream shall be formatted as follows:

3.3.7.3.1 Power Calibration Table Stream

RBP Length Name Contents

0 32 | mplementation |dentifier EntitylD [UDF
2.1.5]

32 4 Number of Records Uint32 [1/7.1.5]
56 * Power Calibration Table Records bytes

| mplementation Identifier:
See UDF section 2.1.5.

Number of Records:
Shall specify the number of records contained in the power calibration table

Power Calibration Table Records:
A series of power calibration table records for drives which have written to thisdisc. The length
of thistable is variable, but shall be a multiple of four bytes. Recording of datain any
unstructured field shall be left-justified and padded on the right with #20 bytes.

Power Calibration Table Record L ayout

RBP Length Name Contents
0 2 Record Length Uint16[1/7.1.3]
2 2 Drive Unique Area Length [DUA L] Uint16[1/7.1.3]
4 32 Vendor ID bytes
36 16 Product 1D bytes
52 4 Firmware Revision Level bytes
56 16 Seria Number/Device Unique ID bytes
72 8 Host ID bytes
80 12 Originating Time Stamp Timestamp [1/7.3]
92 12 Updated Time Stamp Timestamp [1/7.3]
104 2 Speed uUint16 [1/7.1.3]
106 6 Power Calibration Values bytes
112 [DUA L] | DriveUnique Area bytes

Record Length - The length of this Power Calibration Table Record in bytes, including the optional
variable length Drive Unigue Area. Shall be a multiple of four bytes.

Drive Unique Area Length - The length of the optional Drive Unigue Arearecorded at the end of this
record in bytes. Shall be a multiple of four bytes.

UDF 2.00 75 April 3, 1998

Vendor ID - The Vendor ID reported by the drive.

Product ID - The Product 1D reported by the drive.

Firmware Revision Level - The Firmware Revision Level reported by the drive.

Serial Number/Device Unique ID - A serial number or other unique identifier for the specific drive,
of the model specified by the vendor and product 1Ds given, which has successfully used the power
calibration values reported herein to record data on this disc.

Host ID - The host serial number, ethernet 1D, or other value (or combination of values) used by an
implementation to identify the specific host computer to which the drive was attached when it
successfully used the power calibration values reported herein to record dataon thisdisc. An
implementation shall attempt to provide an unique value for each host, but is not required to
guarantee the value's uniqueness.

Originating Time Stamp - The date and time at which the power calibration values recorded herein
were initially verified to have been successully used.

Updated Time Samp - The date and time at which the power calibration values recorded herein were
most recently verified to have been successully used.

Speed - The recording speed, as reported by the drive, at which power calibration values recorded
herein were successfully used. This value is the number of kilobytes per second (bytes per second /
1000) that the data was written to the disc by the drive (truncating any fractions). For example, a
speed of 176 means data was written to the disc at 176 Kbytes/second, which is the basic CD-DA
(Digital Audio) datarate (a.k.a. “1X” for CD-DA). A speed of 353 means data was written to the
disc at 353 Kbytes/second, or twice the basic CD-DA datarate (ak.a “2X” for CD-DA). CD-ROM
recording rates should be adjusted upward (roughly 15%) to the corresponding CD-DA ratesto
determine the correct speed value (eg. A “1X” CD-ROM datarate should be recorded asa“1X” CD-
DA, which is a speed of 176). Note that these are raw datarates and do not refelect all overhead
resulting from (additional) headers, error correction data, etc.

Power Calibration Values - The vendor-specific power calibration values reported by the drive.

Drive Unigque Area - Optional area for recording unrestricted information unigue to the drive (such
as drive operating temperature) which certain implementations may use to enhance the use of the
recorded power calibration information or the operation of the associated drive. Recording of datain
this field shall be defined by the drive manufacturer. This area shall be an integral multiple of four
bytes in length.

UDF 2.00 76 April 3, 1998

3.3.7.4 UDF Backup Time

The name of this stream shall be set to:

“*UDF Backup”

This stream shall have the following contents, which should be embedded in the |CB:

UDF Backup Time

RBP Length

Name

Contents

0 12

Backup Time

timestamp

Backup Time isthe latest time that a backup of this volume was performed.

3.3.8 UDF Defined Non-System Streams

This section defines the following non-system streams:

Stream Name Stream L ocation M etadata Flag
“* UDF Macintosh Resource Fork” Any file or directory 0
“*UDF OS/2 EA” Any file or directory 0
“*UDE NT ACL” Any file or directory 0
“*UDF UNIX ACL” Any file or directory 0

3.3.8.1 Macintosh Resource Fork Stream

Because the Resource Fork is referenced by an explicit interface, UDF implementations are not
provided the authoritative name for this stream. For the purpose of interchange, the name shall be set
to:

“* UDF Macintosh Resource Fork”

The Metadata bit in the File Characteristics field of the File |dentifier Descriptor shall be set to 0to
indicate that the existence of this file should be made known to clients of a platform’s file system
interface.

3.3.8.2 OS2 EA Stream
All OS/2 definable extended attributes shall be stored as a named stream whose name shall be set to:
"*UDF OS/2 EA"

UDF 2.00 77 April 3, 1998

The OS2EA Sream contains atable of OS/2 Full EAs (FEA) as shown below.

FEA format
RBP | Length Name Contents
0 1 Flags Uint8
1 1 Length of Name (=L_N) Uint8
2 2 Length of Value (=L_V) Uintl6
4 LN Name bytes
4+L N LV Value bytes

For a complete description of Full EAs (FEA) please reference the following IBM document:

"Installable File System for OS2 Version 2.0"
0S92 File Systems Department

PSPC Boca Raton, Florida

February 17, 1992

3.3.8.3 Access Control Lists

Certain operating systems support the concept of Access Control Lists (ACLS) for enforcing file
access restrictions. |n order to facilitate support for ACL’s UDF 2.0 will define a set of system level
named streams, whose purpose will be to storethe ACL associated with a given file object.

ACLs under UDF will be stored as named streams, following the rules of section 3.3.5. The
contents of the named stream ACL shall be opaque and are not defined by this document.

| nterpretation of the contents of the named ACL shall be left to the operating system for which the
ACL isintended. The following names will be used to identify the ACL s and shall be reserved.
These names shall not be used for application named streams.

“*UDFENT ACL”

This name shall identify the named stream ACL for theWindows NT operating system.

“*UDF UNIX ACL”

This name shall identify the named stream ACL for the UNIX operating system.

UDF 2.00 78 April 3, 1998

4. User Interface Requirements
4.1 Part 3- Volume Structure

Part 3 of |SO/EC 13346ECMA 167 contains various | dentifiers which, depending uponthe |
implementation, may have to be presented to the user.

* Volumeldentifier

* VolumeSetldentifier

* LogicalVolumelD

These identifiers, which are stored in CS0, may have to go through some form of translation
to be displayable to the user. Therefore when an implementation must perform an OS
specific translation on the above listed identifiers the implementation shall use the algorithms
described in section 4.1.2.1.

C source code for the translation algorithms may be found in the appendices of this
document.

4.2 Part 4 - File System

42.1 ICB Tag

struct icbtag { [* 1SO-13346ECMA 167 4/14.6 */
Uint32 PriorRecordedNumberofDirectEntries;
Uint16 Strategy Type;
byte StrategyParameter[2];
Uint16 NumberofEntries;
byte Reserved; /* ==#00*/
Uint8 FileType;
Lb addr Parentl CBLocation;
Uint16 Flags;

}

4.2.1.1 FileType
Any open/close/read/write requests for file(s) that have any of the following values in this
field shall result in an Access Denied error condition under non-UNIX operating system
environments :

FileType values - 0 (Unknown), 6 (block device), 7 (character device), 9 (FIFO), and
10 (C_ISSOCK).

Any open/close/read/write requests to a file of type 12 (SymbolicLink) shall access the
file/directory to which the symbolic link is pointing.

UDF 2.00 79 April 3, 1998

4.2.2 Fileldentifier Descriptor

struct FileldentifierDescriptor {
struct tag DescriptorTag;

}

—/* 1SO-13346ECMA 167 4/14.4*/

FileVersionNumber;
FileCharacteristics;
LengthofFileldentifier;

struct long_ad- ICB,;

Lengthofl mplementationUse;
I mplementationUse[];
Fileldentifier[?];
Padding[];

4.2.2.1 char Fileldentifier

Since most operating systems have their own specifications as to characteristics of a legal
Fileldentifier, this becomes a problem with interchange. Therefore since all
implementations must perform some form of Fileldentifier translation it would be to the
users advantage if all implementations used the same algorithm.

UDF 2.00

The problems with Fileldentifier translations fall within one or more of the following

categories:

Name Length -Most operating systems have some fixed limit for the length of
afileidentifier.

Invalid Characters - Most operating systems have certain characters
considered as being illegal within afile identifier name.

Displayable Characters - Since UDF supports the Unicode character set
standard characters within a file identifier may be encountered which are not
displayable on the receiving system.

Case Insensitive - Some operating systems are case insensitive in regards to
file identifiers. For example OS/2 preservesthe original case of thefile
identifier when the file is created, but uses a case insensitive operations when
accessing the file identifier. In OS2 “Abc” and “ABC” would be the same file
name.

Reserved Names - Some operating systems have certain names that cannot be
used for afile identifier name.

The following sections outline the Filel dentifier translation algorithm for each specific
operating system covered by this document. This algorithm shall be used by all OSTA UDF
compliant implementations. The algorithm only applies when reading an illegal

QN April 3,1998

oY

Fileldentifier. Theoriginal Fileldentifier name on the media should not be modified. This
algorithm shall be applied by any implementation which performs some form of
Fileldentifier translation to meet operating system file identifier restrictions.

All OSTA UDF compliant implementations shall support the UDF translation algorithms, but
may support additional algorithms. If multiple algorithms are supported the user of the
implementation shall be provided with a method to select the UDF translation algorithms. 1t
is recommended that the default displayable algorithm be the UDF defined algorithm.

The primary goal of these algorithms isto produce a unique file name that meets the specific
operating system restrictions without having to scan the entire directory in which the file
resides.

C source code for the following algorithms may be found in the appendices of this document.

NOTE: Inthe definition of the following algorithms anytime a d-character is specified in
quotes, the Unicode hexadecimal value will also be specified. In addition the following
algorithms reference “CS0 Hex representation”, which corresponds to using the Unicode
values #0030 - #0039, and #0041 - #0046 to represent a value in hex.

The following algorithms could still result in name-collisions being reported to the user of an
implementation. However, the rationale includes the need for efficient access to the contents
of adirectory and consistent name translations across logical volume mounts and file system
driver implementations, while allowing the user to obtain access to any file within the
directory (through possibly renaming afile).

Definitions:
A Fileldentifier shall be considered as being composed of two parts, afile name and file
extension.

The character '.' (#002E) shall be considered as the separator for the Fileldentifier of afile;
characters appearing subsequent to the last "' (#002E) shall be considered as constituting the
fileextension if and only if it islessthan or equal to 5 charactersin length, otherwise the file
extension shall not exist. Characters appearing prior to the file extension, excluding the last "'
(#002E), shall be considered as constituting the file name.

NOTE: Even though OS2, Macintosh, and UNIX do not have an official concept of
afilename extension it is common file naming conventionsto end afile with “.”
followed by a1 to 5 character extension. Therefore the following algorithms attempt
to preserve the file extension up to a maximum of 5 characters.

UDF 2.00 April 3,1998

[0e]
=

4.2.2.1.1 MS-DOS

Due to the restrictions imposed by the MS DOS operating system environments on the
Fileldentifier associated with a file the following methodology shall be employed to handle
Fileldentifier(s) under the above-mentioned operating System environments :

UDF 2.00

Restrictions: The file name component of the Fileldentifier shall not exceed 8 characters.
The file extension component of the Fileldentifier shall not exceed 3 characters.

1.

2.

Fileldentifier Lookup: Upon request for a"lookUp" of a Fileldentifier, a case-
insensitive comparison shall be performed.

Validate Fileldentifer: If the Fileldentifier isavalid MS-DOS file identifier then
do not apply the following steps.

Remove Spaces: All embedded spaces within the identifier shall be removed.
Invalid Characters: A Fileldentifier that contains characters considered invalid
within afile name or file extension (as defined above), or not displayable in the
current environment, shall have them translated into " _" (#005F). (the file
identifier on the mediais NOT modified). Multiple sequential invalid or non-
displayable characters shall be translated into asingle “_" (#005F) character.
Reference the appendix on invalid characters for acomplete list.

Leading Periods:. In the event that there do not exist any characters prior to the
first "." (#002E) character, leading "." (#002E) characters shall be disregarded up
to the first non “.” (#002E) character, in the application of this heuristic.

Multiple Periods: In the event that the Fileldentifier contains multiple"." (#002E)
characters, all characters appearing subsequent to the last ".' (#002E) shall be
considered as constituting the file extension if and only if it isless than or equal to
5 charactersin length, otherwise the file extension shall not exist. Characters
appearing prior to the file extension, excluding the last '.' (#002E), shall be
considered as constituting the file name. All embedded "." (#002E) characters
within the file name shall be removed.

Long Extension: In the event that the number of characters constituting the file
extension at this step in the process is greater than 3, the file extension shall be
regarded as having been composed of the first 3 characters amongst the characters
constituting the file extension at this step in the process.

Long Filename: In the event that the number of characters constituting the file
name at this step in the processis greater than 8, the file name shall be truncated
to 4 characters.

Fileldentifier CRC: Since through the above process character information from
the original Fileldentifier islost the chance of creating a duplicate Fileldentifier
in the same directory increases. To greatly reduce the chance of having a
duplicate Fileldentifier the file name shall be modified to contain a CRC of the
original Fileldentifier. Thefile name shall be composed of the first 4 characters
constituting the file name at this step in the process; followed by a 4 digit CSO
Hex representation of the 16-bit CRC of the original CSO Fileldentifier. NOTE:
All other algorithms except DOS precede the CRC by a separator ‘# (#0023). Due
to the limited number of charactersin a DOS file name a separator for the CRC is
not used.

Q9 April 3,1998

oL

10. The new file identifier shall be translated to all upper case.

4.2.2.1.2 OS2
Due to the restrictions imposed by the OS/2 operating system environment, on the
Fileldentifier associated with a file the following methodology shall be employed to handle
Fileldentifier(s) under the above-mentioned operating System environment:

1. Fileldentifier Lookup: Upon request for a "lookUp" of a Fileldentifier, a
case-sensitive comparison may be performed. If the case-sensitive comparison is
not done or if it falls, a case-insensitive comparison shall be performed.

2. Validate Fileldentifer: If the Fileldentifier isavalid OS2 file identifier then do
not apply the following steps.

3. Invalid Characters. A Fileldentifier that contains characters considered invalid
within an OS2 file name, or not displayable in the current environment shall have
them translated into "_" (#005F). Multiple sequential invalid or non-displayable
characters shall be translated into a single “_” (#005F) character. Reference the
appendix on invalid characters for a complete list.

4. Trailing Periods and Spaces. All trailing “.” (#002E) and “ “ (#0020) shall be
removed.

5. Fileldentifier CRC: Since through the above process character information from
the original Fileldentifier islost the chance of creating a duplicate Fileldentifier
in the same directory increases. To greatly reduce the chance of having a
duplicate Fileldentifier the file name shall be modified to contain a CRC of the
original Fileldentifier.

If there is afile extension then the new Fileldentifier shall be composed of up to
thefirst (254 - (length of (new file extension) + 1 (for the'.")) - 5 (for the #CRC))
characters constituting the file name at this step in the process, followed by the
separator '# (#0023); followed by a 4 digit CSO Hex representation of the 16-hbit
CRC of the original CSO Fileldentifier, followed by . (#002E) and the file
extension at this step in the process.

Otherwise if there is no file extension the new Fileldentifier shall be composed of
up to the first (254 - 5 (for the #CRC)) characters constituting the file name a this
step in the process. Followed by the separator '# (#0023); followed by a 4 digit
CS0 Hex representation of the 16-bit CRC of the original CSO Fileldentifier.

4.2.2.1.3 Macintosh
Due to the restrictions imposed by the Macintosh operating system environment, on the
Fileldentifier associated with a file the following methodology shall be employed to handle
Fileldentifier(s) under the above-mentioned operating system environment :

1. Fileldentifier Lookup: Upon request for a "lookUp" of a Fileldentifier, a
case-sensitive comparison may be performed. If the case-sensitive comparison is
not done or if it falls, a case-insensitive comparison shall be performed.

UDF 2.00 Q2 April 3, 1998

oo

2. Validate Fileldentifer: If the Fileldentifier isavalid Macintosh file identifier then
do not apply the following steps.

3. Invalid Characters. A Fileldentifier that contains characters considered invalid
within a Macintosh file name, or not displayable in the current environment, shall
have them translated into "_" (#005F). Multiple sequential invalid or non-
displayable characters shall be translated into a single “_” (#005F) character.
Reference the appendix on invalid characters for acomplete list

4. Long Fileldentifier - In the event that the number of characters constituting the
Fileldentifier at this step in the process is greater than 31 (maximum name length
for the Macintosh operating system), the new Fileldentifier will consist of the first
26 characters of the Fileldentifier at this step in the process.

5. Fileldentifier CRC Since through the above process character information from
the original Fileldentifier islost the chance of creating a duplicate Fileldentifier
in the same directory increases. To greatly reduce the chance of having a
duplicate Fileldentifier the file name shall be modified to contain a CRC of the
original Fileldentifier.

If there is afile extension then the new Fileldentifier shall be composed of up to
thefirst (31 - (Ilength of (new file extension) + 1 (for the'.")) - 5 (for the #CRC))
characters constituting the file name at this step in the process, followed by the
separator '# (#0023); followed by a 4 digit CSO Hex representation of the 16-hbit
CRC of the original CSO Fileldentifier, followed by "' (#002E) and the file
extension at this step in the process.

Otherwise if there is no file extension the new Fileldentifier shall be composed of
up to the first (31 - 5(for the #CRC)) characters constituting the file name a this
step in the process. Followed by the separator '# (#0023); followed by a 4 digit
CS0 Hex representation of the 16-bit CRC of the original CS0 Fileldentifier.

4.221.4 Windows 95 & Windows NT

UDF 2.00

Due to the restrictions imposed by the Windows 95 and Windows NT operating system
environments, on the Fileldentifier associated with a file the following methodology shall be
employed to handle Fileldentifier(s) under the above-mentioned operating System
environment:

1. Fileldentifier Lookup: Upon request for a "lookUp" of a Fileldentifier, a
case-sensitive comparison may be performed. If the case-sensitive comparison is
not done or if it fails, a case-insensitive comparison shall be performed.

2. Validate Fileldentifer: If the Fileldentifier isavalid file identifier for Windows
95 or Windows NT then do not apply the following steps.

3. Invalid Characters. A Fileldentifier that contains characters considered invalid
within a file name of the supported operating system, or not displayable in the
current environment shall have them translated into " " (#005F). Multiple
sequential invalid or non-displayable characters shall be translated into a single
“ " (#O05F) character. Reference the appendix on invalid characters for a
complete list.

April 3,1998

R

4.

5.

4.2.2.1.5 UNIX
Due to the restrictions imposed by UNIX operating system environments, on the
Fileldentifier associated with a file the following methodology shall be employed to handle
Fileldentifier(s) under the above-mentioned operating System environment:

UDF 2.00

1.

2.

Trailing Periods and Spaces: All trailing “.” (#002E) and “ * (#0020) shall be
removed.

Fileldentifier CRC: Since through the above process character information from
the original Fileldentifier islost the chance of creating a duplicate Fileldentifier

in the same directory increases. To greatly reduce the chance of having a
duplicate Fileldentifier the file name shall be modified to contain a CRC of the
original Fileldentifier.

If there is afile extension then the new Fileldentifier shall be composed of up to
the first (255 - (length of (new file extension) + 1 (for the'.")) - 5 (for the #CRC))
characters constituting the file name at this step in the process, followed by the
separator '# (#0023); followed by a 4 digit CSO Hex representation of the 16-hbit
CRC of the original CSO Fileldentifier, followed by "' (#002E) and the file
extension at this step in the process.

Otherwise if there is no file extension the new Fileldentifier shall be composed of
up to the first (255 - 5 (for the #CRC)) characters constituting the file name a this
step in the process. Followed by the separator '# (#0023); followed by a 4 digit
CS0 Hex representation of the 16-bit CRC of the original CS0 Fileldentifier.

Fileldentifier Lookup: Upon request for a "lookUp" of a Fileldentifier, a case-
sensitive comparison shall be performed.

Validate Fileldentifer: If the Fileldentifier isavalid UNIX file identifier for the
current system environment then do not apply the following steps.

Invalid Characters. A Fileldentifier that contains characters considered invalid
withina UNIX file name for the current system environment, or not displayable in
the current environment shall have them translated into *_" (#005E). Multiple
sequential invalid or non-displayable characters shall be translated into asingle

“ " (#OO5E) character. Reference the appendix on invalid charactersfor a
complete list

Long Fileldentifier - In the event that the number of characters constituting the
Fileldentifier a this step in the process is greater than MAXNamelength
(maximum name length for the specific UNIX operating system), the new
Fileldentifier will consist of the firss MAXNamelLength-5 characters of the
Fileldentifier at this step in the process.

Fileldentifier CRC Since through the above process character information from
the original Fileldentifier islost the chance of creating a duplicate Fileldentifier

in the same directory increases. To greatly reduce the chance of having a
duplicate Fileldentifier the file name shall be modified to contain a CRC of the
original Fileldentifier.

ol April 3,1998

oo

UDF 2.00

If there is afile extension then the new Fileldentifier shall be composed of up to
the first (MAXNameLength - (Ilength of (new file extension) + 1 (for the'.)) - 5
(for the #CRC)) characters constituting the file name at this step in the process,
followed by the separator '# (#0023); followed by a4 digit CSO Hex
representation of the 16-bit CRC of the original CSO Fileldentifier, followed by "'
(#002E) and thefile extension at this step in the process.

Otherwise if there is no file extension the new Fileldentifier shall be composed of
up to the first (MAXNameLength - 5 (for the #CRC)) characters constituting the
file name at this step in the process. Followed by the separator '# (#0023);
followed by a 4 digit CSO Hex representation of of the 16-bit CRC of the original
CS0 Fileldentifier.

foTaY April 3,1998

5. Informative
5.1 Descriptor Lengths

The following table summarizes the UDF limitations on the lengths of the Descriptors described in

1SO-13346ECMA 167.

Descriptor Length
Anchor Volume Descriptor Pointer 512
Volume Descriptor Pointer 512
I mplementation Use Volume Descriptor 512
Partition Descriptor 512
Logical Volume Descriptor Nno max
Unallocated Space Descriptor Nno max
Terminating Descriptor 512
Logical Volume Integrity Descriptor no max
File Set Descriptor 512

File Identifier Descriptor

Maximum of a
Logical Block Size

Allocation Extent Descriptor 24
Indirect Entry 52
Terminal Entry 36

File Entry

Maximum of a
Logical Block Size

Unallocated Space Entry

Maximum of a
Logical Block Size

Space Bit Map Descriptor

Nno mMax

Partition Integrity Entry

N/A

5.2 Using Implementation Use Areas

5.2.1 Entity Identifiers

Refer to the section on Entity Identifiers defined earlier in this document.

5.2.2 Orphan Space

Orphan space may exist within alogical volume, but it is not recommended since it may be
reallocated by some type of logical volume repair facility. Orphan space is defined as space
that isnot directly or indirectly referenced by any of the non-implementation use descriptors

defined in 1SO-13346ECMA 167.

NOTE: Any allocated extent for which the only reference resides within an implementation

use field is considered orphan space.

UDF 2.00

April 3,1998

5.3 Boot Descriptor

Please refer to the "OSTA Native I mplementation Specification” document for information
on the Boot Descriptor.

5.4 Technical Contacts

UDF 2.00

Technical questions regarding this document may be emailed to the OSTA Technical
Committee at info@osta.org. Also technical questions may be faxed to the attention of the
OSTA Technical Committee at 1-805-962-1542.

OSTA may also be contacted through the following address:
Technical Committee Chairman
OSTA
311 East Carrillo Street
Santa Barbara, CA 93101
(805) 963-3853

Also monitor the OSTA web site at www.osta.org for additional information.

Q9 April 3,1998

Q0O

6. Appendices

6.1 UDF Entity Identifier Definitions

Entity |dentifier

Description

"*OSTA UDF Compliant"

Indicates the contents of the specified logical volume or file set
is complaint with domain defined by this document.

“*UDF LV Info” Contains additional Logical Volumeidentification information.

"* UDF FreeEA Space" Contains free unused space within the implementation extended
attribute space.

“* UDF FreeAppEA Space” Contains free unused space within the application extended

attribute space.

“*UDF DVD CGMS Info”

Contains DVD Copyright Management Information

"*x JDF 9812 EA e@ﬂta ns QSZQ egtaqded attr b te da&a
"*UDF OS2 EALength" Contains OS2 extended attribute length.
"* UDF Mac Volumelnfo" Contains Macintosh volume information.

"*UDF Mac FinderInfo"

Contains Macintosh finder information.

"k Dl;pqae nq ab abe" optarns-Macihtosh-Unrauel D able
“*UDF Virtual Partition” Describes UDF Virtual Partition
“*UDF Sparable Partition” Describes UDF Sparable Partition

“*UDF Virtua Alloc Thl”

Containsinformation for handling rewriting to sequentially
written media.

“*UDF Sparing Table’

Contains information for handling defective areas on the media

UDF 2.00

9 April 3,1998

oo

6.2 UDF Entity Identifier Values
Entity |dentifier Byte Value

"*OSTA UDF Compliant" H2A, #AF, #53, #54, #41, #20, #55, #44, #46, #20, #43, #6F,
#6D, #70, #6C, #69, #61, #6E, #74

“*UDF LV Info’ H#2A, #55, #44, #46, #20, #AC, #56, #20, #49, #EE, #66, #6F

"* UDF FreeEA Space’ H2A, #55, #44, #46, #20, #46, H#T2, #65, #65, #45, #41, #53, #70,
#61, #63, #65

"* UDF FreeA ppEA Space” H2A, #55, #44, #46, #20,
H#46, #72, #65, #65, #41, #70, #70,
#45, #41, #53, #70, #61, #63, #65

“*UDF DVD CGMS Info” H2A, #55, #44, #46, #20, #44, #56, #44, #20,
H#43, #47, #4D, #53, #20, #49, #6E, #66, #6F

"*UDF OS/2 EALength" H2A, #55, #44, #46, #20, #45, #41, #AC, #65, #OE, #67, #74, #68

"*UDF Mac Volumelnfo" H2A, #55, #44, #46, #20, #4D, #61, #63, #20, #56, #6F, #6C,
H#75, #6D, #65, #49, #OE, #66, #OF

"*UDF Mac FinderInfo" H2A, #55, #44, #46, #20, #4D, #61, #63, #20, #49, #69, H#6E,
#64, #65, #72, #49, #EE, #66, #6F

“*UDF Virtua Partition” H2A, #55, #A4, #46, #20, #56, #69, #72, #14, #T5, #61, #6C,
#20, #50, #61, #72, #74, #69, #T4, #69, #6F, #6E

“*UDF Sparable Partition” H2A, #55, #44, #46, #20, #53, #70, #61, #72, #61, #62, #6C,
#65, #20, #50, #61, #72, #74, #69, #74, #69, #6F, #6E

“*UDF Virtua Alloc Thl” H2A, #55, #A4, #46, #20, #56, #69, #72, #14, #T5, #61, #6C,
#20, #41, #6C, #6C, #6F, #63, #20, #54, #62, #6C

“*UDF Sparing Table’ H2A, #55, #44, #46, #20, #53, #70, #61, #72, #69, #GE, #67,
#20, #54, #61, #62, #6C, #65

UDF 2.00 April 3, 1998

©
()

6.3 Operating System Identifiers
The following tables define the current allowable values for the OS Class and OS I dentifier
fields in the Identifier Suffix of Entity Identifiers.

The OS Class field will identify under which class of operating system the specified
descriptor was recorded. The valid values for thisfield are as follows:

Value Operating System Class
Undefined

DOS

0s/2

Macintosh OS

UNIX

Windows 9x

Windows NT

7-255 | Reserved

(OB |WIN|FL|O

The OS Identifier field will identify under which operating system the specified descriptor
was recorded. The valid values for thisfield are as follows:

O
(%))

oS Operating System Identified
Class | ldentifier
Any vaue | Undefined

DOS/Windows 3.x

0s/2

Macintosh OS System 7
UNIX - Generic

UNIX - IBM AlIX

UNIX - SUN OS/ Solaris
UNIX - HP/UX

UNIX - Silicon Graphics Irix
UNIX - Linux

UNIX - MKLinux

UNIX - FreeBSD
Windows 95

Windows NT

OO B[RRI R(R[A|PDWIN|IF|O
O(O(N|O|0|A~[WIN|FL|IO|O|O0|O

For the most up to date list of values for OS Class and OS Identifier please contact OSTA and
request a copy of the UDF Entity Identifier Directory. Thisdirectory will also contain
I mplementation Identifiers of ISVswho have provided the necessary information to OSTA.

NOTE: If you wish to add to this list please contact the OSTA Technical Committee Chairman at
the OSTA address listed in section 5.3 Technical Contacts. Currenthy-notal-featuresof- Windows

UDF 2.00 April 3,1998

(e}
=

April 3, 1998

02

UDF 2.00

6.4 OSTA Compressed Unicode Algorithm

/***

* OSTA conpliant Uni code conpression, unconpression routines.
* Copyright 1995 Mcro Design International, Inc.
* Witten by Jason M R nn.

* Mcro Design International gives permssion for the free use of the

* foll owi ng source code.
*/
#i ncl ude <stddef. h>

/***

* The following two typedef's are to renove conpil er dependanci es.

* byte needs to be unsigned 8-bit, and unicode_t needs to be
* unsigned 16-bit.
*/

t ypedef unsigned short unicode_t;
t ypedef unsigned char byte;

/***

* Takes an OSTA CSO conpressed uni code name, and converts
* it to Unicode.

*/
*/

* The Unicode output will be in the byte order

* that the local conpiler uses for 16-bit val ues.

* NOTE: This routine only perforns error checking on the conplD.
* It is up to the user to ensure that the unicode buffer is |arge
* enough, and that the conpressed unicode nane is correct.

*

* RETURN VALUE

*

* The nunber of uni code characters which were unconpressed.

* A-1is returned if the conpression IDis invalid.

*/

i nt UnconpressUni code(

i nt nunber O Byt es, /* (Input) number of bytes read from nedi a.
byt e *UDFConpressed, /* (lnput) bytes read from nedi a.

uni code_t *uni code) /* (Qutput) unconpressed uni code characters.

unsi gned int conpl D
int returnVal ue, unicodel ndex, byt el ndex;

/* Use UDFConpressed to store current byte being read. */
conpl D = UDFConpressed[0] ;

/* First check for valid conplD. */
if (conplD!= 8 && conplD != 16)

*/

returnValue = -1;
el se
{ .
uni codel ndex = 0;
byt el ndex = 1;
/* Loop through all the bytes. */
whi | e (bytel ndex < nunber O Byt es)
{
if (conplD == 16)
/*Move the first byte to the high bits of the unicode char.
uni code[uni codel ndex] = UDFConpressed[byt el ndex++] << 8;
el se
uni code[uni codel ndex] = O0;
}
if (bytelndex < nunber O Bytes)
/*Then the next byte to the low bits. */
uni code[uni codel ndex] | = UDFConpressed[byt el ndex++] ;
UDF 2.00

©
w

*/

April 3,1998

uni codel ndex++;
ret urnVal ue = uni codel ndex;

return(returnVal ue);

/***

* DESCRI PTI ON:

* Takes a string of unicode wi de characters and returns an OSTA CSO

* conpressed uni code string. The uni code MIUST be in the byte order of

* the conpiler in order to obtain correct results. Returns an error

* if the conpression IDis invalid.

*

* NOTE: This routine assunes the inplenmentation already knows, by

* the local environnent, how many bits are appropriate and

* therefore does no checking to test if the input characters fit

* into that nunber of bits or not.

*

* RETURN VALUE

*

* The total nunber of bytes in the conpressed OSTA CSO string,

* i ncluding the conpression ID.

* A-1is returned If the conpression IDis invalid.

*/

i nt ConpressUni code(

i nt nunber O Chars, /* (Input) nunber of unicode characters. */

int conpl D, /* (Input) conpression ID to be used. */

uni code_t *uni code, /* (Input) unicode characters to conpress. */
(Qutput) conpressed string, as bytes. */

byt e *UDFConpressed) /*
{
int bytelndex, unicodel ndex;

if (conplD!= 8 && conpl D != 16)

bytel ndex = -1; /* Unsupported conpression ID! */
el se
{
/* Place conpression code in first byte. */
UDFConpr essed[0] = conpl D
byt el ndex = 1;
uni codel ndex = 0;
whi | e (uni codel ndex < nunber Of Char s)
{
if (conplD == 16)
/* First, place the high bits of the char
* into the byte stream
*
/
UDFConpr essed[byt el ndex++] =
(uni code[uni codel ndex] & OxFF00) >> 8;
/*Then place the low bits into the stream */
UDFConpr essed[byt el ndex++] = uni code[uni codel ndex] & OxO0O0FF;
uni codel ndex++;
}
}

return(bytel ndex);

UDF 2.00 oA April 3, 1998

6.5 CRC Calculation

The following C program may be used to calculate the CRC-CCITT checksum
used in the TAG descriptors of 1SOAEC-13346ECMA 167.

/ *
* CRC 010041
*
/
static unsigned short crc_table[256] = {

0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,
0x8108, 0x9129, OxAl4A, 0xB16B, 0xCl8C, OxDLAD, OxE1CE, OxF1EF,
0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, Ox72F7, 0x62D6,
0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, O0xF3FF, OxE3DE,
0x2462, 0x3443, 0x0420, 0x1401, Ox64E6, O0x74C7, O0x44A4, 0x5485,
OxA56A, 0xB54B, 0x8528, 0x9509, OxE5EE, O0xF5CF, O0xC5AC, 0xD58D,
0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,
OxB75B, OxA77A, 0x9719, 0x8738, OxF7DF, OxE7FE, 0xD79D, O0xC7BC,
0x48C4, O0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
O0xCI9CC, OxDOED, OxE98E, OxF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
Ox5AF5, Ox4AD4, Ox7AB7, Ox6A96, Ox1A71, OxO0A50, Ox3A33, O0x2A12,
OxDBFD, 0OxCBDC, OxFBBF, OxEB9E, 0x9B79, 0x8B58, 0xBB3B, OxAB1A,
0x6CA6, 0x7C87, O0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
OxEDAE, OxFD8F, OxCDEC, OxDDCD, OxAD2A, 0xBDOB, 0x8D68, 0x9D49,
Ox7E97, Ox6EB6, Ox5ED5, Ox4EF4, Ox3El3, Ox2E32, Ox1E51, OxOE70,
OxFFI9F, OxEFBE, OxDFDD, OxCFFC, OxBF1B, OxAF3A, Ox9F59, Ox8F78,
0x9188, 0x81A9, OxB1lCA, OxAlEB, 0xD10C, O0xCl2D, OxF14E, OxELlG6F,
0x1080, 0Ox00A1, 0x30C2, O0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83B9, 0x9398, O0xA3FB, 0xB3DA, 0xC33D, 0xD31C, O0xE37F, O0xF35E,
0x02B1, 0x1290, O0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
OxB5EA, 0xA5CB, 0x95A8, 0x8589, OxF56E, O0xE54F, 0xD52C, 0xC50D,
Ox34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
OxA7DB, OxB7FA, 0x8799, 0x97B8, OxE75F, OxF77E, O0xCr1D, 0xD73C,
0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
0xD94C, 0xC96D, OxF90E, OxE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB,
0x5844, 0x4865, 0x7806, 0x6827, 0x18CO, O0x08E1l, 0x3882, 0x28A3,
OxCB7D, 0OxDB5C, OxEB3F, OxFBlE, O0x8BF9, 0x9BD8, O0xABBB, O0xBB9A,
Ox4A75, Ox5A54, O0x6A37, Ox7A16, OxO0AF1, Ox1ADO, Ox2AB3, 0x3A92,
OxFD2E, OxEDOF, OxDD6C, OxCDAD, OxBDAA, OxAD8B, O0x9DE8, 0x8DC9,
0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CEO, 0x0CCL,
OxXEF1F, OxFF3E, OxCF5D, OxDF7C, OxAF9B, OxBFBA, Ox8FD9, Ox9FFS8,
Ox6E17, Ox7E36, Ox4E55, Ox5E74, O0x2E93, Ox3EB2, OxOED1l, Ox1EFO

b

unsi gned short

cksum(s, n)
regi ster unsigned char *s;
register int n;

{
regi ster unsigned short crc=0;
while (n-- > 0)

crc = crc_table[(crc>>8 N *s++4) & Oxff] ™ (crc<<8);

return crc;

}

/* UNI CODE Checksum */

unsi gned short

uni code cksum(s, n)
regi ster unsi gned short *s;
register int n;

{

regi ster unsi gned short crc=0;
while (n-- > 0) {
/[* Take high order byte first--corresponds to a big endian byte stream */

crc = crc table[(crc>>8 » (*s>>8) & Oxff] ~ (crc<<8);

crc = crc table[(crc>>8 N (*s++ & Oxff)) & Oxff] ~ (crc<<8):
_}
UDF 2.00 95 April 3,1998

return crc;

b
#i f def MAIN
unsi gned char bytes[] = { 0x70, Ox6A, Ox77 };
mai n()
unsi gned short x;
x = cksun(bytes, sizeof bytes);
printf("checksum cal cul ated=%.4x, correct=%.4x\en", x, 0x3299);
exit(0);
}
#endi f
UDF 2.00 96 April 3,1998

The CRC table in the previous listing was generated by the following program:

#i ncl ude <st di o. h>

/*
* a.out 010041 for CRG-CCITT
*/

mai n(argc, argv)
int argc; char *argv[];

{
unsigned |long crc, poly;
int n, i;
sscanf (argv[1l], "% 0", &poly);
if(poly & Oxffff0000){
fprintf(stderr, "polynomal is too |arge\en");
exit(1);
printf("/*\en * CRC 0%\en */\en", poly);
printf("static unsigned short crc_table[256] = {\en");
for(n = 0; n < 256; n++){
if(n %8 == 0)
printf(" ");
crc = n << §;
for(i =0; i <8; i++){
if(crc & 0x8000)
crc = (crc << 1) ~ poly;
el se
crc <<= 1;
crc &= OxFFFF;
}
if(n == 255)
printf("0x%4X ", crc);
el se
printf("0x%®4X ", crc);
if(n %8 ==7)
printf("\en");
printf("};\en");
) exi t(0);

All the above CRC code was devised by Don P. Mitchell of AT&T Bell Laboratories and Ned W.
Rhodes of Software Systems Group.

It has been published in "Design and Validation of Computer Protocols,”

Prentice Hall, Englewood Cliffs, NJ, 1991, Chapter 3, ISBN 0-13-539925-4.

Copyright isheld by AT&T.

AT&T gives permission for the free use of the above source code.

UDF 2.00 Q7 April 3,1998

6.6 Algorithm for Strategy Type 4096

This section describes a strategy for constructing an ICB hierarchy. For strategy type 4096 the root
ICB hierarchy shall contain 1 direct entry and 1 indirect entry. To indicate that thereis 1 direct entry
a1 shall berecorded as a Uint16 in the StrategyParameter field of the ICB Tag field. A value of 2
shall be recorded in the MaximumNumber OfEntries field of the ICB Tag field.

The indirect entry shall specify the address of another |CB which shall also contain 1 direct entry
and 1 indirect entry, where the indirect entry specifies the address of another 1CB of the same type.
See the figure below:

DE
DE
IE
DE
DE
IE DE
DE Ny
IE N

NOTE: Thisstrategy builds an ICB hierarchy that isasimple linked list of direct entries.

UDF 2.00 April 3,1998

(]
[0¢]

6.7 ldentifier Trandation Algorithms
The following sample source code examples implement the file identifier translation algorithms
described in this document.

The following basic algorithms may also be used to handle OS specific translations of the
Volumeldentifier, VolumeSetldentifier, LogicalVolumel D and FileSetID.

6.7.1 DOS Algorithm

/***

* OSTA UDF conpliant file name translation routine for DOCS.

* Copyright 1995 Mcro Design International, Inc.

* Witten by Jason M R nn.

M cro Design International gives permssion for the free use of the
/followi ng source code.

E

#i ncl ude <stddef. h>

#defi ne DOS_NAME_LEN 8

#defi ne DOS_EXT_LEN 3
#define | LLEGAL_CHAR_NMARK Ox005F
#defi ne TRUE 1
#defi ne FALSE 0
#defi ne PERI QD 0x002E
#def i ne SPACE 0x0020

/***

* The following two typedef's are to renove conpil er dependanci es.
* byte needs to be unsigned 8-bit, and unicode_t needs to
* be unsigned 16-bit.
*/
t ypedef unsigned short unicode_t;
t ypedef unsigned char byte;

[*** PROTOTYPES ***/
unsi gned short uni code cksun{regi ster unsigned eharshort *s, register int n);
int I'slllegal (unicode_t current);

/* Define functions or macros to both determine if a character

* is printable and conpute t he uppercase version of a character
* under your inplenentation.

*/

int Uni codel sPrint(unicode_t);

uni code_t Uni codeToUpper (uni code_t);

/***

* Transl ate udf Nanme to dosNanme using OSTA conpliant.
* dosName nust be a unicode string with mn |ength of 12.
*

* RETURN VALUE

* Nurmber of uni code characters in dosName.

*

/

nt UDFDOSName(

uni code_t *dosNane, /* (Qutput)DOS conpati bl e nane. */
uni code_t *udf Nane, /* (Input) Nanme from UDF vol une. */
int udf Len;-) /* (Input) Length of UDF Nare. */
b“te *fdpa% | * (Hp t) g“tes as read frem F*Eda * /

. E ! * . E . E .*
{

int index, doslndex = 0, extlndex = 0, |astPeriodlndex;
int needsCRC = FALSE, hasExt = FALSE, witingExt = FALSE;
unsi gned short val ueCRrRC,

uni code_t ext[DOS_EXT_LEN], current;

UDF 2.00 April 3, 1998

(e}
©

/*Used to convert hex digits. Used ASCII for readability.
const char hexChar[] = "0123456789ABCDEF";

for (index 0 ; index < udfLen ; index++)

current
current

udf Nane[i ndex];
Uni codeToUpper (current);

if (current == PERI OD)
if (doslndex==0 || hasExt)

/* Ignore | eading periods or any other than
* used for extension.
*/

needsCRC = TRUE;

el se

{
/* First, find last character which is NOT a peri
* or space.
*/

| ast Peri odl ndex = udflLen - 1;
whi | e(l ast Peri odl ndex >=0 &&
(udf Nane[| ast Peri odl ndex] == PERI CD | |
udf Nane[| ast Peri odl ndex] == SPACE))

| ast Peri odl ndex- -;
/* Now search for |ast renaining period. */
whi | e(l ast Peri odl ndex >= 0 &&
udf Nane[| ast Peri odl ndex] != PER CD)

| ast Peri odl ndex- -;

}

/* See if the period we found was the |last or not
if (lastPeriodl ndex != index)

*/

od

ox

needsCRC = TRUE; /* |If not, nane needs translation. */

/* As long as the period was not trailing,

* the file name has an extension.
*/

if (lastPeriodl ndex >= 0)

hasExt = TRUE;

}
}
el se
{
if ((!hasExt && doslndex == DOS_NAME_LEN) ||
ext | ndex == DOS_EXT_LEN)
{
/* File name or extension is too long for DOS. */
needsCRC = TRUE;
el se
if (current == SPACE) /* lgnore spaces. */
needsCRC = TRUE;
el se
/* Look for illegal or unprintable characters. */
if (Islllegal(current) || !UnicodelsPrint(current))
UDF 2.00

=
[}
()

April 3,1998

needsCRC = TRUE;
current = | LLEGAL_CHAR MNARK;
/* Skip Illegal characters(even spaces),
* but not peri ods.
*
/

whi | e(i ndex+1 < udfLen
&& (Islll egal (udf Nane[i ndex+1])
|| !'Uni codel sPrint(udf Narme[i ndex+1]))
&& udf Name[i ndex+1] != PERI OD)

i ndex++;

}

/* Add current char to either file nane or ext. */
if (witingExt)

ext [ext | ndex++] = current;
el se

dosNane[dosl| ndex++] = current;

}
}

/* See if we are done with file name, either because we reached
* the end of the file nane length, or the final period.
*/
if (!witingExt && hasExt && (doslndex == DOS_NAME_LEN ||
index == | ast Peri odl ndex))
{

/* 1f so, and the nanme has an extension, start reading it. */
writingExt = TRUE
/* Extension starts after last period. */
index = | ast Peri odl ndex;
}
}

/*Now handl e CRC if needed. */
if (needsCRQC)
{

/* Add CRC to end of file name or at position 4. */
i f (doslndex >4)

dosl ndex = 4;

val ueCRC = uni code_cksumn(f-dNareudf Nane, #+dNarwekenudf Len);

/* Convert 16-bit CRC to hex characters. */

dosNane[dos| ndex++] hexChar [(val ueCRC & 0xf000) >> 12]
dosNane[dos| ndex++] hexChar [(val ueCRC & 0x0f 00) >> 8];
dosNane[dos| ndex++] hexChar [(val ueCRC & 0x00f0) >> 4];
dosNane[dos| ndex++] hexChar [(val ueCRC & 0x000f)];

/* Add extension, if any. */
if (extlndex != 0)

{
dosNane[dosl| ndex++] = PERI OD,
for (index = 0; index < extlndex; index++)
dosNane[dosl ndex++] = ext[index];
}

return(dosl ndex);

}

/***

UDF 2.00 101 April 3, 1998

* Decides if a Unicode character natches one of a |ist

* of ASCI| characters.

* Used by DOS version of Islllegal for readability, since all of the
* illegal characters above 0x0020 are in the ASCI1 subset of Unicode.
* Wrks very simlarly to the standard C function strchr().

*

* RETURN VALUE

*

* Non-zero if the Unicode character is in the given ASCI| string.
*/

int Uni codelnString(

unsi gned char *string, /* (lnput) String to search through. */

uni code_t ch) /* (Input) Unicode char to search for. */

int found = FALSE;
while (*string = "\0" && found == FALSE)
{

/* These types shoul d conpare, since both are unsigned nunbers. */
if (*string ==

found = TRUE;
string++;

return(found);

/***

*

* % Kk X X F
~

nt

Deci des whet her character passed is an illegal character for a
DCS file nane.
RETURN VALUE
Non-zero if file character is illegal.
Islllegal (

unicode_t ch) /* (Input) character to test. */

/* CGenuine illegal char's for DOS. */
if (ch < 0x20 || UnicodelnString("\\/:*?2\"<>|", ch))

return(l);
el se
return(0);
}
UDF 2.00

=
[}
N

April 3,1998

6.7.2 OS2, Macintosh,Windows 95, Windows NT and UNIX Algorithm

/***

* OSTA UDF conpliant file name translation routine for OS2,
W ndows 95, Wndows NT, Macintosh and UNI X
Copyright 1995 Mcro Design International, Inc.
Witten by Jason M R nn.
M cro Design International gives permssion for the free use of the
foll owi ng source code.
/

/***

* To use these routines with different operating systens.

*

s/ 2
Defi ne OS2
Defi ne MAXLEN

* % ko X X

254

W ndows 95
Define WN_95
Defi ne MAXLEN

255

W ndows NT
Define W N_NT
Def i ne MAXLEN

255

Maci nt osh:
Defi ne MAC.
Def i ne MAXLEN

31.

UNI X
Define UNI X
Defi ne MAXLEN as specified by unix version.

* 0% 0k ok ok ok ok 2k ko X X X X X X X X

/

#define | LLEGAL_CHAR _NMARK Ox005F
#defi ne CRC_MARK 0x0023
#defi ne EXT_SI ZE 5
#defi ne TRUE 1
#defi ne FALSE 0
#defi ne PERI QD 0x002E
#def i ne SPACE 0x0020

/***

* The following two typedef's are to renove conpil er dependanci es.
* byte needs to be unsigned 8-bit, and unicode_t needs to
* be unsigned 16-bit.
*
/
t ypedef unsigned int unicode_t;
t ypedef unsigned char byte;

[*** PROTOTYPES ***/
int Islllegal (unicode_t ch);
unsi gned short unicode cksun(regi ster unsigned eharshort *s, register int n);

/* Define a function or macro which determnes if a Unicode character is
* printabl e under your inplenentation.
*/

int Uni codel sPrint(unicode_t);

/***

* Translates a long file nane to one using a MAXLEN and an il | egal

* char set in accord with the OSTA requirenments. Assunes the nane has
* already been translated to Uni code.

*

* RETURN VALUE

*

* Number of uni code characters in translated nane.

*/

nt UDFTr ansName(
uni code_t *newNane, /*(Qut put) Transl at ed nane. Mist be of |ength MAXLEN+/

UDF 2.00 April 3, 1998

=
[}
w

uni code_t *udfNane, /* (lnput) Nane from UDF vol une. */
i nt udf Len, /* (Input) Length of UDF Nane. */

* 1 - * r r 1 . *
byte—ti-dName,—/*{1-nAput)—Bytes—as—readtromapdia—, .) . . "
{

int index, newl ndex = 0, needsCRC = FALSE;

int extlndex, newextlndex = 0, haskExt = FALSE;
#ifdef (OS2 | WN_95 | WN_NT)

int traillndex = O;
#endi f

unsi gned short val ueCRrRC

uni code_t current;

const char hexChar[] = "0123456789ABCDEF";

for (index = 0; index < udflLen; index++)

current = udf Name[i ndex];

if (Islllegal (current) || !Unicodel sPrint(current))
needsCRC = TRUE;
/* Replace Illegal and non-di splayable chars wi th underscore. */
current = | LLEGAL_CHAR MARK;
/* Skip any other illegal or non-displayable characters. */

whil e(1 ndex+1 < udfLen && (Isll1egal (udf Name[index+1])
|| !Unicodel sPrint(udf Name[i ndex+1])))

i ndex++;
}
}

/* Record position of extension, if one is found. */
if (current == PERIOD && (udflLen - index -1) <= EXT_SI ZE)

if (udfLen == index + 1)

/* Atrailing period is NOT an extension. */
hasExt = FALSE;

}
el se
hasExt = TRUE;
ext I ndex = index;
newext | ndex = new ndex;
}

}
#ifdef (OS2 | WN .95 | WN_NT)
/* Record position of |ast char which is NOT period or space. */
else if (current != PERIOD & current != SPACE)
traill ndex = new ndex;
#endi f}
if (newl ndex < MAXLEN)
newNare[new ndex++] = current;
el se
needsCRC = TRUE;
}

#ifdef (OS2 | WN_ 95 | WN_NT)
/* For OS2, 95 & NT, truncate any trailing periods and\or spaces. */
if (traillndex != newindex - 1)

new ndex = traillndex + 1;

needsCRC = TRUE;
hasExt = FALSE; /* Trailing period does not make an extension. */

UDF 2.00 104

April 3,1998

}
#endi f
if (needsCRQC)
{
uni code_t ext[EXT_SI ZE] ;

int |ocal Extlndex = 0;
i f (hasExt)
{

int maxFil enanelLen;
/* Translate extension, and store it in ext. */
for(index = 0; index<EXT_SIZE && extlndex + index +1 < udfLen;

i ndex++)
{
current = udf Nanme[ext|ndex + index + 1];
if (Islllegal (current) || !isprintUnicodel sPrint(current))
{
needsCRC = 1;
/* Replace |llegal and non-displayabl e chars
* with underscore.
*/
current = | LLEGAL_CHAR MARK;
/* Skip any other illegal or non-displayable
* characters.
*/
whil e(index + 1 < EXT_SIZE
&& (Islllegal (udf Nane[ext | ndex + index + 2])
|[] tis p i nt (udf Name[ext I ndex + index + 2])))
i ndex++;
}
ext [| ocal Ext |l ndex++] = current;
}

/* Truncate filename to | eave roomfor extension and CRC. */
maxFi | enaneLen = ((MAXLEN - 45) - local Extl ndex - 1);
if (newl ndex > maxFil enaneLen)

new ndex = naxFil enanelLen;
el se

new ndex = newkxt | ndex;

}
else if (newl ndex > MAXLEN - 5)

/*1f no extension, nake sure to |leave roomfor CRC */
new ndex = MAXLEN - 5;

}
newNanme[newl ndex++] = CRC_MARK; /* Add nmark for CRC */

/*Cal culate CRC fromoriginal filenane fromFileldentifier. */
val ueCRC = uni code_cksun{ H+dNareudf Nane, #-dNarelenudf Len);

/* Convert 16-bits of CRC to hex characters. */

newNane[new ndex++] = hexChar [(val ueCRC & 0Oxf000) >> 12];
newName[newl ndex++] hexChar [(val ueCRC & 0x0f 00) >> 8];
newNanme[newl ndex++] hexChar [(val ueCRC & 0x00f Q) >> 4];
newNanme[newl ndex++] hexChar [(val ueCRC & 0x000f)];

/* Place a translated extension at end, if found. */
i f (hasExt)
{

newName[newl ndex++] = PERI OD;
for (index = 0;index < |ocal Extl ndex ;index++)

newNane[new ndex++] = ext[index];

UDF 2.00 April 3, 1998

=
()
o1

return(new ndex);

#ifdef (OS2 | WN 95 | WN_NT)

/****************T********T***

* Decides if a Unicode character natches one of a |ist
* of ASClI| characters.

* Used by OS2 version of Islllegal for readability, since all of the
* illegal characters above 0x0020 are in the ASCI | subset of Unicode.
* Works very simlarly to the standard C function strchr().

*

* RETURN VALUE

*

* Non-zero if the Unicode character is in the given ASCI| string.
*/

int Uni codelnString(

unsi gned char *string, /* (lnput) String to search through. */

uni code_t ch) /* (Input) Unicode char to search for. */

int found = FALSE;
while (*string = "\0" && found == FALSE)
{

/* These types shoul d conpare, since both are unsigned nunbers. */
if (*string == ch)

found = TRUE;
}

string++;
}
return(found);
}
#endi f /* OS2 */

/***

* Deci des whether the given character is illegal for a given CS.

*

* RETURN VALUE

*

* Non-zero if char is illegal.
*/
int Islllegal (unicode_t ch)
{
#i f def MAC
/* Only illegal character on the MACis the colon. */
if (ch == 0x003A)
return(l);
el se
return(0);

#elif defined UN X
/* 1llegal UN X characters are NULL and sl ash. */
if (ch == 0x0000 || ch == 0x002F)
return(l);
el se
return(0);
#elif defined (OS2 | WN_95 | WN_NT)

/* 1llegal char's for OS/2 according to WARP tool kit. */
if (ch < 0x0020 || UnicodelnString("\\/:*2\"<>|", ch))

return(l);
el se
{
UDF 2,00 106 April 3, 1998

return(0);

#endi f
}

UDF 2.00 107 April 3, 1998

6.8 Extended Attribute Checksum Algorithm

/
Cal cul ates a 16-bit checksum of the Inplenentation Use
Extended Attribute header. The fields AttributeType

t hrough I npl ementationldentifier inclusively represent the
data covered by the checksum (48 bytes).

/
Ui nt16 Conput eEAChecksun{byte *dat a)

* % Ok X X X F

{
Ui nt 16 checksum = 0;
Ui nt count ;
for(count = 0; count < 48; count++)
checksum += *dat a++;
}
return(checksum);
}

UDF 2.00 108

April 3,1998

6.9 Requirementsfor DVD-ROM
This appendix defines the requirements and restrictions for UDF formatted DVD-ROM discs.

* DVD-ROM discs shall be mastered with the UDF file system
* DVD-ROM discs shall consist of a single volume and a single partition.

NOTE:. Thedisc may also include the 1SO 9660 file system. If the disc contains both UDF and
SO 9660 file systems it shall be known as a UDF Bridge disc. This UDF Bridge disc will allow
playing DVD-ROM mediain computers which may only support 1SO 9660. As UDF computer
implementations are provided, the need for 1SO 9660 will disappear, and future discs should contain
only UDF.

If you intend to do any DV D development with UDF, please make sure that you fill out the OSTA
UDF Developer Registration Form located in appendix 6.11. For planned operating system, check
the Other box and write in DVD.

6.9.1 Constraintsimposed by UDF for DVD-Video

This section describes the restrictions and requirements for UDF formatted DV D-Video discs for
dedicated DVD content players. DVD-Video is one specific application of DVD-ROM using the
UDF format for the home consumer market. Due to limited computing resources within aDVD
player, restrictions and requirements were created so that aDV D player would not have to support
every feature of the UDF specification.

All DVD-Video discs shall be mastered to contain all required data as specified by +S©
13346ECMA 167 (2™ edition) and UDF 1.02. Thiswill ease playing of DVD-Video in computer
systems. Examples of such data include the time, date, permission bits, and a free space map
(indicating no free space). While DVD player implementations may ignore these fields, a UDF
computer system implementation will not. Both entertainment-based and computer-based content
can reside on the same disc.

NOTE: DVD-Video discs mastered according to UDF 2.00 may not be compatible with DV D-
Video players. DVD-Video players expect mediain UDF 1.02 format.

In an attempt to reduce code size and improve performance, all division described is integer
arithmetic; all denominators shall be 2™n, such that all divisions may be carried out vialogical shift
operations.

» A DVD player shall only support UDF and not 1SO 9660.

- Originating systems shall constrain individual files to be less than than or equal to 2*° - Logical
Block Sze bytes in length.

» Thedataof each file shall be recorded as a single extent. Each File Entry shall be recorded using
the ICB Strategy Type 4.

UDF 2.00 April 3, 1998

=
[}
©

» File and directory names shall be compressed as 8 bits per character using OSTA Compressed
Unicode format .

* A DVD player shall not be required to follow symbolic links to any files.

* TheDVD-Video files shall be stored in a subdirectory named "VIDEO_TS" directly under the
root directory. Directory names are standardized in the DVD Specifications for Read-Only Disc
document.

NOTE: The DVD Specifications for Read-Only Disc is a document, developed by the DVD
Consortium, that describes the names of all DVD-Video files and a DVD-Video directory which
will be stored on the media, and additionally describes the contents of the DVD-Video files.

* Thefilenamed "VIDEO_TS.IFO" inthe VIDEO_TS subdirectory shall be read first.

All the above constraints apply only to the directory and files which the DVD player needs to access.
There may be other files and directories on the media which are not intended for the DVD player and
do not meet the above listed constraints. These other files and directories are ignored by the DVD
player. Thisiswhat enables the ability to have both entertainment-based and computer-based
content on the same disc.

6.9.2 How toread a UDF disc
This section describes the basic proceduresthat aDVD player would go through to read a UDF
formatted DVD-Video disc.

6.9.2.1 Step 1. Volume Recognition Sequence
Find als©-13346n ECMA 167 Descriptor in a volume recognition area which shall start at
logical sector 16.

6.9.2.2 Step 2. Anchor Volume Descriptor Pointer
The Anchor Volume Descriptor Pointer which is located at an anchor point must be found.
Duplicate anchor points shall be recorded at logical sector 256 and logical sector n, wheren is
the highest numbered logical sector on the disc.

A DVD player only needsto look at logical sector 256; the copy at logical sector n is redundant
and only needed for defect tolerance. The Anchor Volume Descriptor Pointer contains three
things of interest:

1. Static structuresthat may be used to identify and verify integrity of the disc.

2. Location of the Main Volume Descriptor Sequence (absolute logical sector number)

3. Length of the Main Volume Descriptor Sequence (bytes)

The data located in bytes 0-3 and 5 of the Anchor VVolume Descriptor Pointer may be used for
format verification if desired. Verifying the checksum in byte 4 and CRC in bytes 8-11 are
good additional verifications to perform. MVDS Location and MVDS_Length are read from
this structure.

UDF 2.00 April 3,1998

=
=
()

6.9.2.3 Step 3. Volume Descriptor Sequence
Read logical sectors:

MVDS_Location through MVDS Location + (MVDS Length - 1) / SectorSize

The logical sector size shall be 2048 bytes for DVD media. If this sequence can not be read, a
Reserve Volume Descriptor Sequence should be read.

The Partition Descriptor shall be a descriptor with atag identifier of 5. The partition number
and partition location shall be recorded in logical sector number.

Partition_Location and Partition_Length are obtained from this structure.

The Logical Volume Descriptor shall be a descriptor with atag identifier of 6. The location and
length of the File Set Descriptor shall be recorded in legical-block-numberthe Logical Volume

Descriptor.

FSD_Location, and FSD_L ength are returned from this structure.

6.9.2.4 Step 4. File Set Descriptor
The File Set Descriptor is located at logical sector numbers:

Partition_Location + FSD_L ocation through
Partition_Location + FSD_L ocation + (FSD_Length - 1) / BlockSize

RootDir_Location and RootDir_Length shall be read from the File Set Descriptor in logical
block number.

6.9.25 Step 5. Root Directory File Entry
RootDir_Location and RootDir_L ength define the location of a File Entry. The File Entry
describes the data space and permissions of the root directory.
The location and length of the Root Directory is returned.

6.9.2.6 Step 6. Root Directory
Parse the datain the root directory extent to find the VIDEO_TS subdirectory.

Find the VIDEO_TS File Identifier Descriptor. The name shall be in 8 bit compressed UDF
format. Verify that VIDEO_TSisadirectory.

Read the File Identifier Descriptor and find the location and length of a File Entry describing the
VIDEO_TSdirectory.

6.9.2.7 Step 7. FileEntry of VIDEO_TS

The File Entry found in the step above describes the data space and permissions of the
VIDEO_TSdirectory.

UDF 2.00 111 April 3,1998

The location and length of the VIDEO_TS directory is returned.

6.9.2.8 Step 8. VIDEO_TSdirectory
The extent found in the step above contains sets of File Identifier Descriptors. Inthis pass,
verify that the entry pointsto afile and is named VIDEO_TS.IFO.

6.9.2.9 Step 9. FileEntry of VIDEO_TS.IFO
The File Entry found in the step above describes the data space and permissions of the
VIDEO _TS.IFOfile.

The location and length of the VIDEO_TS.IFO file is returned.

Further files can be found in the same manner asthe VIDEO_TS.IFO file when needed.

6.9.3 Obtaining DVD Documents
To obtain a copy of the DVD Specifications for Read-Only Disc document as well as other DVD
related material, contact:

ToshibaBLDG. 13D

Toshiba Corporation

DVD Business Promotion & Support
DVD Products Division

Attn: Senior Manager

TEL: +81-3-3457-2473

FAX: +81-3-5444-9430

UDF 2.00

=
=
N

April 3,1998

6.10 Recommendationsfor CD Media

CD Media (CD-R and CD-RW) requires special consideration due to its nature. CD was originally
designed for read-only applications which affects the way in which it iswritten. The following
guidelines are established to ensure interchange.

Each file and directory shall be described by asingle direct ICB. The ICB should be written after
the file data to alow for data underruns during writing, which will cause logical gapsin the file data
The ICB can be written afterward which will correctly identify all extents of the file data. The ICB
shall be written in the datatrack, the file system track (if it exists), or both.

6.10.1 Use of UDF on CD-R media

1SO-13346ECMA 167 requires an Anchor Volume Descriptor Pointer (AVDP) at sector 256 and |
either N or (N - 256), where n isthe last recorded Physical Address on the media. UDF requires that
the AVDP be recorded at both sector 256 and sector (N - 256) when each session is closed (2.2.3). |
The file system may be in an intermediate state before closing and still be interchangeable, but not
grictly in compliance with 1SO-13346ECMA 167. Inthe intermediate state, only one AVDP exists. |
It should exist at sector 256, but if thisis not possible due to atrack reservation, it shall exist at

sector 512.

I mplementations should place file system control structures into virtual space and file data into real
space. Reader implementations may cache the entire VAT, the size of the VAT should be
considered by any UDF originating software. Computer based implemenations are expected to
handle VAT sizes of at least 64K bytes; dedicated player implementations may handle only smaller
sizes.

The VAT may be located by using READ TRACK INFORMATION (for unfinished media) or
READ TOC or READ CD RECORDED CAPACITY for finished media. See X3T10-1048D (SCSI-
3 Multi Media Commands).

6.10.1.1 Requirements

» Writing shall use Mode 1 or Mode 2 Form 1 sectors. On one disc, either Mode 1 or Mode 2
Form 1 shall be used; a mixture of Mode 1 and Mode 2 Form 1 sectors on one disc is not
allowed.

* If Mode 2 Form 1 is used, then the subheader bytes of all sectors used by the user data files and
by the UDF structures shall have the following value:

Filenumber =0
Channel number =0
Submode = 08h

Coding information = 0

UDF 2.00 April 3, 1998

=
=
w

* Anintermediate state is allowed on CD-R mediain which only one AVDP isrecorded; this
single AVDP shall be at sector 256 or sector 512 and according to the multisession rules below.

» Sequential file system writing shall be performed with variable packet writing. This allows
maximum space efficiency for large and small updates. Variable packet writing is more
compatible with CD-ROM drives as current models do not support method 2 addressing required
by fixed packets.

* ThelLogica Volume Integrity descriptor shall be recorded and the volume marked as open.
Logical volume integrity can be verified by finding the VAT ICB at the last recorded Physical
Address. If the VAT ICB is present, the volume is clean; otherwise it is dirty.

* The Partition Header descriptor, if recorded, shall specify no Unallocated Space Table, no
Unallocated Space Bitmap, no Partition Integrity Table, no Freed Space Table, and no Freed
Space Bitmap. The drive is capable of reporting free space directly, eliminating the need for a
Separate descriptor.

» Each surface shall contain O or 1 read only partitions, O or 1 write once partitions, and O or 1
virtual partitions. CD media should contain 1 write once partition and 1 virtual partition.

6.10.1.2 “Bridge’ formats

I SO 9660 requires a Primary Volume Descriptor (PVD) at sector 16. If an 1SO 9660 file systemis
desired, it may contain references to the same files as those referenced by 1SO-13346ECMA 167 |
structures, or reference a different set of files, or acombination of the two.

It is assumed that early implementations will record some I SO 9660 structures but that as
implementations of UDF become available, the need for 1SO 9660 structures will decrease.

If an 1SO 9660 bridge disc contains Mode 2 Form 1 sectors, then the CD-ROM XA extensions of
SO 9660 must be used.

6.10.1.3 End of session data

A session is closed to enable reading by CD-ROM drives. The last complete session on the disc

shall conform completely to +SO-13346ECMA 167 and have two AVDPs recorded. This shall be |
accomplished by writing data according to End of session data table below. Although not shown in
the following example, the data may be written in multiple packets.

End of session data

Count Description
1 Anchor Volume Descriptor Pointer
255 Implementation specific. May contain user
data, file system structures, and/or link areas.
1 VAT ICB.

The implementation specific data may contain repeated copies of the VAT and VAT ICB.
Compatibility with drives that do not accurately report the location of the last sector will be
enhanced. Implementations shall ensure that enough space is available to record the end of session

UDF 2.00 April 3,1998

=
=
e

data. Recording the end of session data brings a volume into compliance with 1S©-13346ECMA
167.

6.10.2 Use of UDF on CD-RW media

CD-RW media is randomly readable and block writable. This means that while any individual
sector may be read, writing must occur in blocks containing multiple sectors. CD-RW systems do
not provide for sparing of bad areas. Writing rules and sparing mechanisms have been defined.

6.10.2.1 Requirements
* Writing which conforms to this section of the standard shall be performed using fixed length
packets.

» Writing shall be performed using Mode 1 or Mode 2, Form 1 sectors. On one disc, either Mode
1 or Mode 2 Form 1 shall be used.

* If Mode 2 Form 1 is used, then the subheader bytes of all sectors used by the user data files and
by the UDF structures shall have the following value:

Filenumber =0
Channel number =0
Submode = 08h

Coding information = 0

* Thehost shall perform read/modify/write to enable the apparent writing of single 2K sectors.

» The packet length shall be set when the disc is formatted. The packet length shall be 32 sectors
(64 KB).

* Thehost shall maintain alist of defects on the disc using a Non-Allocatable Space List (see
3.3.7.1.2).

» Sparing shall be managed by the host via the sparable partition and a sparing table.

» Discsshall be formatted prior to use.

6.10.2.2 Formatting

Formatting shall consist of writing a lead-in, user data area, and lead-out. These areas may be
written in any order. This physical format may be followed by a verification pass. Defects found
during the verification pass shall be enumerated in the Non-Allocatable Space list (see 3.3.7.1.2). |
Finally, file system root structures shall be recorded. These mandatory file system and root
structures include the Volume Recognition Sequence, Anchor Volume Descriptor Pointers, a
Volume Descriptor Sequence, a File Set Descriptor and a Root Directory.

The Anchor Volume Descriptor Pointers shall be recorded at sectors 256 and N - 256, where N isthe
Physical Address of the last addressable sector.

Allocation for sparing shall occur during the format process. The sparing allocation may be zero in
length.

UDF 2.00 April 3,1998

[N
[
ol

The free space descriptors shall be recorded and shall reflect space allocated to defective areas and
sector sparing aress.

The format may include all available space on the medium. However, if requested by the user, a
subset may be formatted to save formatting time. That smaller format may be later “grown” to the
full available space.

6.10.2.3 Growing the Format

If the medium is partially formatted, it may be later grown to alarger size. This operation consists
of:

* Optionally erase the lead-in of the last session.

* Optionally erase the lead-out of the last session.

» Write packets beginning immediately after the last previously recorded packet.
* Update the sparing table to reflect any new spare areas

* Adjust the partition map as appropriate

* Update the free space map to show new available area

* Movethelast AVDPto the new N - 256

* Write the lead-in (which reflects the new track size)

* Write the lead-out

6.10.2.4 Host Based Defect M anagement

The host shall perform defect management operations. The CD format was defined without any
defect management; to be compatible with existing technology and components, the host must
manage defects. There are two levels of defect management: Marking bad sectors at format time
and on-line sparing. The host shall keep the tables on the media current.

6.10.2.5 Read M odify Write Operation

CD-RW media requires large writable units, as each unit incurs a 14KB overhead. The file system
requires a 2KB writable unit. The difference in write sizes is handled by a read-modify-write
operation by the host. An entire packet is read, the appropriate portions are modified, and the entire
packet written to the CD.

Note that packets may not be aligned to 32 sector boundaries.

6.10.2.6 Levelsof Compliance

6.10.26.1 Level 1

The disc shall be formatted with exactly one lead-in, program area, and lead-out. The program area
shall contain exactly onetrack. The start of the partition shall be on a packet boundary. The
partition length shall be an integral multiple of the packet size.

UDF 2.00 April 3,1998

IR
=
[02]

6.10.2.6.2 Level 2
The last session shall contain the UDF file system. All prior sessions shall be contained in one read-
only partition.

6.10.2.6.3 Level 3
No restrictions shall apply.

6.10.3 Multisession and Mixed M ode

The VVolume Recognition Sequence and Anchor Volume Descriptor Pointer locations are specified

by 1SO-13346ECMA 167 to be at alocation relative to the beginning of the disc. The beginning of a |
disc shall be determined from a base address Sfor the purposes of finding the VRS and AVDP.

‘S isthe Physical Address of the first data sector in the first recorded datatrack in the last existent
session of the volume. ‘S isthe same value currently used in multisession SO 9660 recording. The
first track in the session shall be a data track.

‘N’ isthe physical sector number of the last recorded data sector on a disc.

If random write mode is used, the media may be formatted with zero or one audio sessions followed
by exactly one writable data session containing one track. Other session configurations are possible
but not described here. There shall be no more than one writable partition or session at one time,
and this session shall be the last session on the disc.

6.10.3.1 Volume Recognition Sequence
The following descriptions are added to UDF (see also | SO/EC 13346ECMA 167 Part 2) inorderto |
handle a multisession disc.

» The volume recognition area of the UDF Bridge format shall be the part of the volume space
starting at sector S+ 16.

» The volume recognition space shall end in the track in which it begins. Asaresult of this
definition, the volume recognition area always exists in the last session of adisc.

* When recorded in Random Access mode, a duplicate Volume Recognition Sequence shatshould
be recorded beginning at sector N - 2516.

6.10.3.2 Anchor Volume Descriptor Pointer

Anchor Volume Descriptor Pointers (AVDP) shall be recorded at the following logical sector
numbers: S+ 256 and N - 256. The AVDP at sector N - 256 shall be recorded before closing a
session; it may not be recorded while a session is open.

6.10.3.3 UDF Bridge for mat

The UDF Bridge format allows UDF to be added to a disc that may contain another file system. A
UDF Bridge disc shall contain a UDF file system inits last session. The last session shall follow the
rules described in “Multisession and Mixed Mode” section above. The disc may contain sessions
that are based on 1SO 9660, audio, vendor unique, or a combination of file systems. The UDF
Bridge format alows CD enhanced discs to be created.

A new Main and Reserve Volume Descriptor Seguence may exist in each added session, and may be
different than earlier VDSs.

UDF 2.00 April 3, 1998

IR
[N
~

If the last session on a CD does not contain avalid UDF file system, the disc is not a UDF disc.

Only the UDF structures in the last session, and any UDF structures and data referenced through

them, are valid.

The UDF session may contain pointersto data or metadata in other sessions, pointers to data or
metadata only within the UDF session, or a combination of both. Some examples of UDF Bridge
discs are shown below.

Multisession UDF disc

Accessto LSN=16+x Accessto LSN=256

e
—_— \ —_—
16 sectors R 16 sectors R
256 sectors ’ N - 256 / 256 sectors
LSN=0 LSN=S
|Fir51 Session | " 1% Recorded Track in the last session

|:| : Volume recognition area

I : Anchor point

CD enhanced disc

:|_St %SS' on 2nd %SS' on
UDF Session amp
Playable by conventional CD-Player Used by UDF

UDF 2.00

April 3,1998

=
=
[0¢]

| SO 9660 converted to UDF

1% session 2" session 3" session
9660 Session 9660 Session UDF Session anp-
Written by conventional 9660 formatter software
Managed by UDF
Foreign format converted to UDF
1% session 2" session 3" session
Data Session Data Session UDF Session amp
Written by another file system
Managed by UDF
UDF 2.00 119 April 3,1998

6.11 UDF Media Format Revision History

The following table shows when changes to the UDF Specification have taken place that affect the
UDF format that can be recorded on a piece of media. The Document Change Notices (DCNSs)

which document a specific change are referenced in the table. The column Update in UDF Revision
describes which revision of the UDF specification that the change was included. Thefields

Minimum UDF Read Revision and Minimum UDF Write Revision relate to the Revision Access
Control fields described in DEN-2-0152.2.6.4. |

Description DCN Updated in Minimum Minimum
UDF UDF Read UDF Write
Revision Revision Revision
Allocation Extent Descriptor 2-002 1.02 1.02 1.02
Path Component File Version Number 2-003 1.02 1.02 1.02
Parent Directory Entries 2-004 1.02 1.02 1.02
Device Specification Extended Attribute 2-005 1.02 101 1.02
Maximum Logical Extent Length 2-006 1.02 1.02 1.02
Unallocated Space Entry 2-008 1.02 1.01 1.02
DVD Copyright Management Information 2-009 1.02 1.02 1.02
Logical Volume Identifier 2-010 1.02 1.01 1.02
Extent Length Field of an Allocation Descriptor 2-012 1.02 1.01 1.02
Non-relocatable & Contiguous FHags 2-013 1.02 1.01 1.02
Revision of Requirements for DVD-ROM 2-014 1.02 1.02 1.02
Revision Access Control 2-015 1.02 1.01 1.02
Volume Set Identifier 2-017 1.02 1.01 1.02
UniquelDs for Extended Attributes 2-018 1.02 1.02 1.02
Clarification of Dstrings 2-019 1.02 101 1.02
Application FreeEASpace Extended Attribute 2-020 1.02 1.02 1.02
Update of Identifier Suffix to 1.02 2-021 1.02 1.02 1.02
Update of Identifier Suffix to 1.50 2-025 1.50 1.50 1.50
Virtud Partition Map Entry 2-026 1.50 1.50 1.50
Allocation of Sparable Partition Map 2-027 1.50 1.50 1.50
Addition of Virtual Allocation Table 2-028 1.50 1.50 1.50
Addition of Sparing Table 2-029 1.50 1.50 1.50
Addition of Non-Allocatable Space List 2-030 1.50 1.5602 1.50
Reccommmendations for CD Media 2-031 1.50 1.50 1.50
Change 1.50t0 2.00 2-033 2.00 1.02 2.00
Clarified Domain flags 2-034 2.00 1.02 2.00
Unicode 2.0 Support 2-035 2.00 1.02 2.00
Named Streams 2-036 2.00 2.00 2.00
Unique ID Table as a Named Stream 2-037 2.00 1.02 2.00
Mac Resource Fork as a Named Stream 2-038 2.00 2.00 2.00
Location Field of the Extended Attribute Header 2-043 2.00 1.02 2.00
Access Control Lists 2-044 2.00 2.00 2.00
Descriptor Tags spanning block boundaries 2-047 2.00 1.02 2.00
Power Cdibration Stream 2-048 2.00 1.02 2.00
Support for CD-R Multisession Required 2-050 2.00 1.50 2.00
Vaueof fiddsin LVID for virtual partition on CD-R 2-051 2.00 1.50 2.00
System stream to indi cate volume backup time 2-055 2.00 2.00 2.00
New VAT 2-056 2.00 2.00 2.00
Restricting Virtual Addresses 2-057 2.00 1.50 2.00
File Times Extended Attribute 2-058 2.00 1.02 2.00
0OS/2 EA Stream 2-061 2.00 2.00 2.00
Non-Allocatable Space Stream 2-062 2.00 1.02 2.00

UDF 2.00 April 3,1998 |

=
N
()

6.12 Developer Registration Form

Any developer that plans on implementing SO/ EC 13346ECMA 167 according to this document |
should complete the developer registration form on the following page. By becoming aregistered

OSTA developer you receive the following benefits:

* You will receive alist of the current OSTA registered developers and their associated
Implementation Identifiers. The developers on thislist are encouraged to interchange

media to verify data interchange among implementations.

* Notification of OSTA Technical Committee meetings. Y ou may attend a limited number

of this meetings without becoming an official OSTA member.

* You can be added to the OSTA Technical Committee email reflector. This reflector
provides you the opportunity to post technical questions on the OSTA Universal Disk

Format Specification.

* You will receive an invitation to participate in the development of the next revision of

this document.

For the latest information on OSTA and UDF visit the OSTA web site at the following address: |

http://www.osta.org
AACOTA _A\NCOTA_ OSTA Universal Disk Format Sp

I I\ I I\ ;
Optical Storage Optical Storage Devel oper Regl Stra
Technology Association Technology Association

Name:

Company:

Address.

City:

State/Province:

Zip/Postal Code:

Country:

Phone: FAX:

Email:

Please indicate on which operating systemsyou plan to support UDF:

O DOS O 052 O Macintosh
O UNIX/POSIX O WindowsNT O Windows 95
O Other

UDF 2.00 121

April 3,1998

Please indicate which media typesyou plan to support:

O Magneto Optical O WORM O Phase Change

O CD-ROM O CD-R O CD-RW

O DVD-ROM O DVD-R O DVD-RAM O DVD-Video
O DVD+RW

O Other

Please indicate what value you plan to usein the I mplementation | dentifier field of the Entity
| dentifier descriptor to identify your implementation:

NOTE: Theidentifier should be something that uniquely identifies your company as well as your product.
O Please add my email addressto the OSTA Technical Committee email reflector.

O Please send an OSTA Membership kit.

FAX Completed form to OSTA at 1-805-962-1541, or mail to:
OSTA, 311E. Carillo Street, SantaBarbara, CA 93101

UDF 2.00 April 3,1998

=
N
N

A

Access Control Lists, 77

ACL, 77

Allocation Descriptor, 7368, 40, 415, 46
Allocation Extent Descriptor, 417

Anchor Volume Descriptor Pointer, 67, 189

C

CD-R, 2, 3,4, 25, 267, 100113, 101114, 102115,
064117

CD-RW, 2, 100,-102113, 115

Ccharspec, 910

Checksum, 56,57,-58,-59,-60, 61, 652, 9563, 66, 108

CRC, 156, 314, 45, 95, 40828497

CS0, 8-9, 120, 13, 16178, 19, 230, 25, 336, 6678,
6880, 7082

D

defect management, 257, 2831, 104117

Descriptor Tag, 156, 314, 405

Domain, i1, 112, 13, 14

DOS, 46,4750, 51, 525, 61, 5781, 6991, #899, 86100,

Dstrings, 910

DVD, 2, 5660, 5761, 7689, 7790, 96109, 97110,
98111, 99112, 468121

DVD Copyright Management Information, 5660,
5761, 7689, 108121

DVD-Video, 96109, 97110

E

ECMA 167, 1

Entity Identifier, 67, 101115162, 17, 18,19, 20,
21, 23, 3233324, 35, 387, 39, 402, 493, 545,
6453, 7659, 7765, 89, 90

Extended Attributes, 3, 225253554, 56, 57, 58,59,
60, 61, 62, 63, 64,65, 7666, 89

extent, 21

Extent Length, £7, 62108121

F

File Entry, 78, 123, 3842, 49,54, 617653

File Identifier Descriptor, 113, 358, 4639, 6750, 79
fileset, 21

File Set Descriptor, 78, 113, 321, 324, 35, 37

File Set Descriptor Sequence, 21

FreeSpaceTable, 20,212

H
HardWriteProtect, 124, 2921, 325, 347

UDF 2.00

ICB, 78, 358, 3640, 4650, 4751, 526, 6678, 6779

ICB Tag, 48, 3640, 4751, 6678

Implementation Use Volume Descriptor, 112, 224,
7425, 87

Implementationldentifier, 167, 19, 20, 21, 24, 137,
59-61,63,6445, 53, 59, 60, 61, 62, 65

1SONEC 13346

L

Logical Block Size, 6-7, 198, 20

Logical Sector Size, 67

logical volume, 21

Logical Volume Descriptor, 78, 11183, 20, 221, 23

Logical Volume Header Descriptor, 213, 459

Logical Volume Integrity Descriptor, 123, 1921, 202,
405

LogicalVolumel dentifier, 78

M

Macintosh, 3, 223, 3924, 45-46-4850, 52, 545, 56, 58;
5960, 6162, 63, 64, 685, 80, 83, 89, 91, 103, 7%
#6+8-90110123

metadata, 35, 66, 67, 68

Metadata, 68, 70, 76

N

Net\Ware 79
Non-Allocatable Space, 2932, 363, 472, 103116

O

Orphan Space, 7487

0S/2, 3, 46,4750, 51, 525, 60, 5661, 5765, 5877,
6479, 6780, 6882, 7076777889, 90, 941,
410103, 107, 123

Overwritable, 67

P

packet, 4, 56, 25267, 28, 2931, 32, 303, 401114,
102115, 103116, 104117

Partition Descriptor, 67, 112, 7487, 98111

Partition Header Descriptor, 347

Partition Integrity Entry, 78, 123, 405

Pathname, 427

power calibration, 72, 73, 74, 75, 76

Primary Volume Descriptor, 67, 112, 157

R

Read-Only, 67
Records, 78, 437

April 3,1998

Rewritable, 67, 347, 416

S

SizeTable, 20,212

SoftWriteProtect, 134, 1921, 347

Sparable Partition Map, 257

Sparing Table, 12,263, 28, 31, 32, 89, 29767790
strategy, 78, 325, 2640

stream, 4, 47, 49, 66, 67, 68, 70, 71, 74, 76, 77, 94, 96
stream directory, 49, 66, 67, 68

streams, 2, 49, 66, 67, 68, 77

SymbalicLink, 6678

T

TagSerialNumber, 156, 314
Timestamp, €7, 191, 202, 448

U

UDFUniquelD, 49, 70, 72
Unallocated Space Descriptor, 78, 262

UDF 2.00

Unicode, €-9, 6710, 6879, 80, 93

UniquelD, 242, 3842, 394543, 49, 523, 6156, 62-63;
76108121

UNIX, 4650, 4852, 634, 72,7385

\%

VAT, 5-25,-26, 27, 2856, 113, 114, 51100101,
102115

Virtual Allocation Table, 526, 27,286

virtual partition, 257, 27161114

Virtua Partition Map, 257

Volume Set, 7, 8, 17, 18, 24, 121

\W

Windows, 4650, 4751, 5761, 6981

Windows 95, 4650, 4751, 7284, 7891, 110123

Windows NT, 4650, 4751, 5761, 7284, 7891, 79103,
90110123

WORM, 67, 201, 325

April 3,1998 |

