MNCTA

RVl R VAW OSTA-2
Optical Storage Revision 1.50
Technology Association 4 Feb 97

Universal Disk
Format ™

Specification

Revision 1.0250

February 4, 19967
© Copyright 1994, 1995, 1996, 1997
Optical Storage Technology Association
ALL RIGHTSRESERVED

Revision History:

1.00 October 24, 1995 Original Release
1.01 November 3, 1995 DVD appendix added
1.02 August 30, 1996 Incorporates Document Change Notices
DCN 2-001 through DCN 2-024
1.50 February 4, 1997 Integrated support for CD-R and CD-RW media

(DCN 2-025 through DCN 2-032)

Optical Storage Technology Association
311 East Carrillo Street
Santa Barbara, CA 93101
(805) 963-3853 Voice
(805) 962-1541 Fax
info@osta.org
http://www.osta.org

This document along with the sample source code is available in eectronic format from OSTA.

Important Notices

This document is a specifi cation adopted by Optical Storage Technology Association (OSTA). Thisdocument may be revised by OSTA. It isintended
solely as a guide for companiesinterested in developing products which can be compatible with other products devel oped using this document. OSTA
makes no representation or warranty regarding this document, and any company using this document shall do so at its sole risk, including specifically the
risksthat a product devel oped will not be compatible with any other product or that any particular performance will not be achieved. OSTA shall not be
liable for any exemplary, incidenta, proximate or consequential damages or expenses arising from the use of this document. This document defines only
one approach to compatibility, and other approaches may be available in the industry.

This document is an authorized and gpproved publication of OSTA. The underlying information and materids contained herein are the exclusive
property of OSTA but may be referred to and utilized by the genera public for any legitimate purpose, particularly in the design and development of
writable optica systems and subsystems. This document may be copied in whole or in part provided that no revisions, dterations, or changes of any kind
are made to the materias contained herein. Only OSTA has the right and authority to revise or change the materia contained in this document, and any
revisions by any party other than OSTA are totally unauthorized and specificaly prohibited.

Compliance with this document may require use of one or more features covered by proprietary rights (such as features which are the subject of a patent,
patent application, copyright, mask work right or trade secret right). By publication of this document, no position is taken by OSTA with respect to the
validity or infringement of any patent or other proprietary right, whether owned by a Member or Associate of OSTA or otherwise. OSTA hereby
expressly disclaims any liahility for infringement of intellectua property rights of others by virtue of the use of this document. OSTA has not and does
not investigate any notices or dlegations of infringement prompted by publication of any OSTA document, nor does OSTA undertake a duty to advise
users or potentiad users of OSTA documents of such notices or dlegations. OSTA hereby expressly advises dl users or potentia users of this document
to investigate and analyze any potentid infringement situation, seek the advice of intellectua property counsel, and, if indicated, obtain alicense under
any applicable intellectua property right or take the necessary steps to avoid infringement of any intellectua property right. OSTA expressly disclams
any intent to promote infringement of any intellectua property right by virtue of the evolution, adoption, or publication of this OSTA document.

Universal Disk Format™ and UDF™ are trademarks of the Optical Storage Technology Association.

CONTENTS

L INTRODUGCTION ..ttt et e e e e e e et e e e e e e e e e e e e e e e e e eeeananns 1
BT T B e —— —— il ritttlit B t4s s lit_Liaee’iin. 1
1.2COMPLIANCE e e e e
D0 DOCUMIENT L @Y OUL ettt ittt e ettt e e e e et et e e e e e e ettt eeeeeees st eeaeessesaas e sasasssssnssseaassesssns 2
RAacie ocrictinne 2 RDoniiiromentc
2-BagieResiHetons-&—Reguemei S
2 el [o] LF=T g o Y 3
211 Part1-3 General REMENENCES. ..ottt e 3
211 Character-Sets——rrrrr
RSN (= 1= (= 1[0 = TR 3
212 OSTA-CE0-Chersce
RSN B < i1 011 1Te 0 ST 4
2:1.3.3 DS HAGST EIMNIS. .t tee ettt ettt b e bt e bt e s b e s b e e s bt e s bt e sb e e s b e e s b e e s he e she e nhe e abe e she e nReenReenneenneas 5
2 A HACS R
2. BaSIC RESITI CLIONS & REGUIT B MBS, 1.ttt e e et e et e eeeeeeeeessesesaasaaaeaaaaaaasaaaaaas 6
2ZA 5 ENTHIYIDENTHHER s
2.0 P L = BN Al oottt ittt ettt ettt ettt e s nabnanennnens 8
22 Part 3-Volume Structure ———rr
N O g P T (o1 (= S = £ PR PO TR P TR PP 8
2 2 1 NDecerintor- T Ao
22 DeEsE e e e
2.0.2 OST A GO0 Nl SI0BC . .ttt ittt ettt ettt ettt ettt sasaenennnens 9
222 Prmepelume Bessrpio—rrrrereerereee e
2.0 3 DI N0 S, ettt ittt ettt et et nnreennnnnens 9
223 Anche\elume Bezerpto- et
2.0 T I T S AT ettt e nnenennnnnnen 10
224 Legleal felume- Dessrbiorrrrerer e
2.0 i B IO Tt T T sttt ssssesnnnnnnnns 10
") ") L_\ | Ihnllmai'orl Snaeca hacr\v‘ln or
ed-Spaeebezsrpiot e
2.2Part 3 - VOIUME SETUCTUN € ... e e e e e e e e e s eessesesaaassaaaasaaaaaeaaaaaaaaaaaasaaaaaaaesaasas 15
2.2.6-Logiea MV olume Htegrityl DESCriPLOr Tag ... eeueereereerieesieesieesiee e sieesiee e e sreeseeesnee e 15
2.2 7 mplemention-Use2 Primary VOolUME DESCIIPLONviviiieiieiiiie st 15
23 Perd—THeSstemrrrreeeeeee e
2.2.3 Anchor Volume DESCriPLOr POINMTETueiiiiiiiiiiieie ettt e e et et e eeeeeeeeeeeeesseseeeesssresaeeaaaaaaaeas 18
23224 1L.0gical VOlUME DESCIIPLOM T .eeveiiteeitiesieestee sttt sttt naeas 18
2.32.2-Fe-Satb Unallocated SPAce DESCITPIONiiueeiteerieeiiee sttt 20
2.32.3Partititon-Header6 Logical Volume INtegrity DESCIIPIONeevveeieeereereeree e 20
2.32.4-Feldentitier7 Implemention Use Volume DESCIIPION.eeiveeieerieeree e 23
235 R
2.2.8 ViITTUBl PartitiON IV .. ettt s et e et e e et s e eassessaaassasasasassassnnnns 25

236 e
2.2.9 SPA A € PAITiTiON MBI ..ttt et e ettt e e et e e s e e e s aesaaaaasesasasassasasenes 25
237 Upalleeated Soace Bt
2.2.00 Virtual AllOCOLi ON Tl € ...ttt eesesesaeeeeseseseaaasanaens 26
") ’2 Q CSnace Ritman hacr\rl ntar
S-Sopee Bimep-Dessrpiorrreeee e e
2.2 0] SO NG T A .ttt ssannnnnnnnnnens 28
") ’2 O Dnv‘hhnn Intearitv Entrvy
Hen-rtegrib Ern e
2.3 P 4 = il Sy S M ettt nensnnsnsnnnnnnees 31
2.340-Allesaten-Dessrpter s
2.3 DESCT I P Or Tttt ettt ettt et e e e e e e e e aaeennnnnnnns 31
2.3 - AlocationExtent2 File SEl DESCITPION ..oiviiitiiieeeiieesiee sttt 31
2.3.12 Pathname3 Partition HEAOEr DESCIIDLONevveieieeiiieeeeeeeeereeeeeeeeesesseessssesssseesessssssssssssssssssssssees 34
24 Part 5-Record - Structire e e
2.3.4 File | dentifier DESCIIDEON ..ot e et e e e e e e e et e et seeeesesiseteeeeaeeiaeeteeeaesaeeiesaasaesasasasaesas 35
2 Quctom hmmdmf Roniiromontc
Z-System-Dependeat Reguireerts———rrrrree e
2.3 D L OB T A G .ttt ittt ettt e e e ettt e seeeesseeeeeaesaeeasaseeesnassaeesaasaeeenaseesennasaas 36
31 Patl-Gengrd e e
RSN SN o | (=0 =) 1 Y 38
AR
2.3.7 UNal OCOL O SIBCE EITY ...ttt seeeesnnnnnnnns 39
32 Part 3 Volume Structire e
2.3.8 SPACE BitMaAD DT I DE0F .. e e e e e e e e e e e eeeeeeseeeeesseeataaeaaaataaaaaaeeetaeeaaraaaeertaraaiaeaiaaeeias 40
I2d-Leglea felumeHesde-Peseripterrrrrrrrrrereeeeeeeeeeeeeee e
2.3 Palti i ON IO Y B Y ettt e e e e e e e eaeeanasennens 40
I3 Perd—THeSystemrrrree e
2.3.010 Al OCALT ON D ST DL Sttt e e e e e e s eaaanannnns 41
32.3.1-FiHetdentifierl Allocation EXIENE DESCIIPIONcc.eeivieriiee ettt e 42
32—
2.3 2 Pl MAIMIE. ..ttt ettt b e nneeennnnnnens 42
33 ez
2.3.13 NON-All OCAL A € SPACE LISE ..ttt sttt e e s es s eeseebeeeseesannenees 42
3.3 4 Exdended Attributes e
Y o AT (= oo o S 0 (v A0 [PO 43
43. USER-INTFERFACESYSTEM DEPENDENT REQUIREMENTS..................... 44
43.1 Part 31 - Vohe SHHEHH-EGENEN @l...eiieiieeieeiiee ettt sre e sreesaeesaeas 44
A2Dart A4 - Cila Quctom
A2 Pard—THe Syste—rrrre e
LT I R 1 0 (=55 = o T T DT T TP PP T T PPPPPTTT 44
A21I1CR Taony
A2 LB ey
3.2Part 3 - VOIUME SETUCTUN € ...t e et e e e e e eeeeeesesasaeaasaaaesaaaaaeaaasaaaaaaaasaaaasasasaesaes 45
43 2.2 Feldentifierl Logical Volume Header DESCIIION ...c.veeveerveerieeieesieesieeseesiee e sree e sree e 45
Infarmativa
R o R 1 (SRS Y/ (<1 1 TR 46

46

O IOy P OO O T O O O 7 X T OO s s s s s s s s s s s s v s s s s s s s s s s s s e s ey

5 2 | lanalmnlamentation llce Areas

53.3.1 File ldentifier DesCriptor-ERgAS. .. eoieeieesee ettt sae e

47

521 Entitv ldentifiers

.32 ICB T A0 . ittt

49

BB FIEENIY ..t
5 2 2 Ornhan - Snace

5 2 Baot Decerintor

67

4, USEr INtErfaCe REGUIT EMENES. . ettt e et e e e e e e eeseesesssaeasasesaeaetaeeeieeeteeieeseeeiesaatesseaaaasaens

CONTACTS

BATECHNICAI

T T T TINT OV O OUTN T TN T T O s ierssrrrsssssssssasansssasassssasassnsasassssasansssasssnsnsssansnsasansnsassnsnsnnnns

67

4.1 Part 3 - VOIUME SEEUCLUI € ..o e e e e e e e e e e e eeesessasssaeaaasasaaaaeaaaeaeeeseetaesaaereseateeteeaaeaaaaas

6 _Annendices

.67

42PART 4-FILESYSTEM ..cooiiiiiiiiiiiiiieiiiei e

6 1 UUDE Entitv ldentifier Definitions
ooty GerdHerweioRS—r i

67

68

OO P eIt 1Y Oy St T T Ot T T O S s s s s s s s s s s s s v s s s s s s s s s s s e

1 0] o

€sC

62 Oneratina Svstam ldentifiers

64.2JDF-Entity.2 File ldentifier \ValuesD

76

o N0 e 0 0F= LAY R

76

SRS o 1 o) (o il =g [0 |1 0 PN

6 5 CRC Caleulation

76

OO gUr It T 1O Ot atOgy T Y PO U T0 s s s s s s s s s s s s s s s s s ey

5.2UsiNg IMplementation USE ATEASoooiiiiiiiiiiiiiei e e et e e e e e e e e e eeaaaessassassaasaaasasaasaaaaaaaaaaasaes

6 6 Alaorithm for Str ateon Tvne 4006

76

s A e S e s Ay S T E

6 7 ldentifier Trand ation Alaorithms

oI N = 0 AV A Ko (=0 | 4 (1= T

76

671 DOS Alaorithm

5.2.2 O PNAN SACE. ..o oo oo oo oo et e e e e eeeeeseseeseeeeteeetataaaaaaataataettattattattataaattataaaiaaaaaaaaas

77

.3 OO DD BT L0 ..ttt ssnnnnnnnnnnnens

67 20S/2 Macintosh and LINIX Alaorithm
O O S VI ACH OGS ARG I A A goHt e e

77

D T EONN CAl N ACES. .ttt ssssssnnnnnnnns

78

6.7 ldentifier Trangdation AlQOrithmMS .o e e e e e e eseeseeeseaaenaas 87

B. 7.0 DOS Al GO N N ittt eeneeennnnnnees 87
6.7.2 OS2, Macintosh,Windows 95, Windows NT and UNIX AlQorithm..........ceeeeeieeeiiiiiiiiiiiiiiineees 91
6.8 Extended Attribute CheckSum AlQOr M. i 96
6.9 RequirementsSfor DVD-ROM .. .ottt e e e e e e e e e e e e e eseeeseseaesessasesaesasaaaasaas 97
6.9.1 Constraints imposed by UDF fOr DV D -VI0E0uiiiiiiiiiiiiiiiiiiiiiiieiiiiiiiiiiiiieiieieseeieeseseeesseseenees 97
6.9.2 HOW £O FEA0 ALUDFE QISC ..ttt ettt seeaeesnennnnnes 98
6.9.3 OBLAINING DV D DOCUMENES. ...ttt s s s e eeeebeeneennnnes 100
6.10 RecommendationSfor CD MEAIal.coooiiiiiiiiiiiee e e s e e s s aseeeeeeeeas 101
6.10.1 Use Of UDF 0N CD=R MBIeiiiiiiiiiiiiiiiiieie ettt ettt eesteseaeeeaeseeneenenees 101
6.10.2 Use Of UDF 0N CD-RW MEOIA ...ttt seeesseseseeaeeseeaeeenenes 103
6.10.3 MultisesSiON aNd MIXEA MOUE.......uueeiiiiiiiii ettt i e e e e e e e eeeeeeeeeeeieeeaeesaesaaeaaaaaaaaaaaaaaas 106
6.11 UDF Media Format REVISION HiSIOIY . .ooiiiiiiiiiiiiiiiiiiei e eeieieeeeeeseesaeseaaaeaaasaaaasaanns 109
6.12 Developer REGISII ation FOMM. .o e e e e e e e e e eieeeaseeiaeeaaesaaaaeaaaaaaaaaanaans 110

This page left intentionally blank

1. Introduction

The OSTA Universal Disk Format (UDF™) specification defines a subset of the standard
ISO/IEC 13346. The primary goal of the OSTA UDF is to maximize data interchange
and minimize the cost and complexity of implementing | SO/IEC 13346.

To accomplish this task this document defines a Domain. A domain defines rules and
restrictions on the use of ISO/IEC 13346. The domain defined in this specification is
known asthe “OSTA UDF Compliant” domain.

This document attempts to answer the following questions for the structures of 1SO/IEC
13346 on a per operating system basis:

Given some |SO/IEC 13346 structure X, for each field in structure X answer the
following questions for a given operating system:

1) When reading this field: If the operating system supports the data in
this field then what should it map to in the operating system?

2) When reading this field: If the operating system supports the data in
this field with certain limitations then how should the field be interpreted
under this operating system?

3) When reading this field: If the operating system does NOT support the
data in this field then how should the field be interpreted under this
operating system?

4) When writing this field: If the operating system supports the data for
this field then what should it map from in the operating system?

5) When writing this field: If the operating system does NOT support the
data for thisfield then to what value should the field be set?

For some structures of ISO/IEC 13346 the answers to the above questions were self
explanatory and therefore those structures are not included in this document.

In some cases additional information is provided for each structure to help clarify the
standard.

This document should help make the task of implementing the 1SO/IEC 13346 standard
easier.

To be informed of changes to this document please fill out and return the OSTA UDF
Developers Registration Form located in appendix 6.106.11.

1.1 Document Layout
This document presents information on the treatment of structures defined under standard

| SO/NEC 13346. —heteowingorensore coverar

This document is separated into the following 4 basic sections:

 Basic Redtrictions and Requirements - defines the restrictions and
requirements which are operating system independent.

» System Dependent Requirements - defines the restrictions and requirements
which are operating system dependent.

» User Interface Requirements - defines the restrictions and requirements which
arerelated to the user interface.

* Informative Annex - Additional useful information.

This document presents information on the treatment of structures defined under standard
| SO/IEC 13346. The following areas are covered :

& Interpretation of a structure/field upon reading from media

&5 Contents of a structure/field upon writing to media. Unless specified otherwise
writing refers only to creating a new structure on the media. When it applies to
updating an existing structure on the media it will be specifically noted as such.

The fields of each structure are listed first, followed by a description of each field with
respect to the categories listed above. In certain cases, one or more fields of a structure
are not described if the semantics associated with the field are obvious,

A word on terminology: in common with I SO/IEC 13346, this document will use shall to
indicate a mandatory action or requirement, may to indicate an optional action or
requirement, and should to indicate a preferred but still optional, action or requirement.

Also, special comments associated with fields and/or structures are prefaced by the
notification: " NOTE:"

1.2 Compliance

This document requires conformance to parts 1, 2, 3 and 4 of ISO/IEC 13346.
Compliance to part 5 of ISO/IEC 13346 is not supported by this document. Part 5 may
be supported in alater revision of this document.

NOTE: Dueto the nature of CD media, Partitions may contain volume structures. This
violates 1 SO 13346 (3/8.5). Efforts are under way to revise 1SO 13346 to allow
volume structures within write-once partitions.

For an implementation to claim compliance to this document the implementation shall
meet all the requirements (indicated by the word shall) specified in this document.

The following are afew points of clarification in regards to compliance:

» Multi-Volume support is optional. An implementation can claim compliance
and only support single volumes.

» Multi-Partition support is optional. An implementation can claim compliance
without supporting the special multi-partition case on a single volume defined
in this specification.

* Media support. Animplementation can claim compliance and support
Bepptobleond Ovenprioblog single media sasstype or A ORM e e onby
er-bethany combination. All implementations should be able to suppert-Read-
Only-mediaread any media that is physically accessable.

* File Name Trandation - Any time an implementation has the need to
transform a filename to meet operating system restrictions it shall use the
algorithms specified in this document.

» Extended Attributes - All compliant implementations shall preserve existing
extended attributes encountered on the media. |mplementations shall create
and maintain the extended attributes for the operating systems they support.
For example, an implementation that supports Macintosh shall preserve any
0S/2 extended attributes encountered on the media. An implementation that
supports Macintosh shall also create and maintain all Macintosh extended
attributes specified in this document.

The full definition of compliance to this document is defined in a separate OSTA
document.

1.3 General References
1.3.1 References

1S0 9660:1988 Information Processing - Volume and File Structure of CD-ROM for Information
Interchange
IEC 908:1987 Compact disc digital audio system

ISO/IEC 10149:1993 Information technology - Data |nterchange on read-only 120mm optical data
discs (CD-ROM based on the Philips/Sony “Y ellow Book™)

Orange Book part-11

Recordable Compact Disc System Part-11, N.V. Philips and Sony Corporation

Orange Book part-111

Recordable Compact Disc System Part-111, N.V. Philips and Sony Corporation

|SO/IEC 13346:1995

Volume and file structure of write-once and rewritable media using non-

ECMA 167

sequential recording for information interchange. Referencesenclosedin[] in
this document are references to 1ISO 13346. Thereferences arein the form
[x/a.b.c], where x is the section number and a.b.c isthe paragraph or figure
number.

European Computer Manufactures Association (ECMA) standard number 167.

1.3.2 Definitions

Revision 2 of this sandard is equivalent to ISO/IEC 13346:1995, and is available
from http://www.ecma.ch.

Audio session Audio session contains one or more audio tracks, and no data track.

Audio track Audio tracks are tracks that are designated to contain audio sectors specified in
the ISO/IEC 908.

CD-R CD-Recordable. A write once CD defined in Orange Book, part-II.

CD-RW CD-Rewritable. An overwritable CD defined in Orange Book, part-111.

Clean File System The file system on the media conforms to this specification.

Data track Data tracks are tracks that are designated to contain data sectors specified in the

Dirty File System

ISO/IEC 10149.
A file system that isnot a clean file system.

Fixed Packet An incremental recording method in which all packetsin agiven track are of a
length specified in the Track Descriptor Block. Addresses presented to a CD
drive are trandated according to the Method 2 addressing specified in Orange
Book parts-Il and -111.

ICB A control node in ISO 13346.

Logical Block Address An address relative to the beginning of a partition, as defined in 1SO 13346.

MediaBlock Address ~ The address of a sector asit appears on the medium, before any mapping
performed by the device.

Packet A recordable unit, which is an integer number of sectors.

Packet Sze The number of user data sectorsin a Packet.

Physical Address

An address used when accessing the medium, as it would appear at the interface

Random Access File System

to the device.

A file system for randomly writable media, either write once or

Sequential File System

rewritable

A file system for sequentidly written media (e.g. CD-R)

Session

The tracks of avolume shall be organized into one or more sessions as specified

Track

by the Orange Book part-11. A session shall be a sequence of one or more tracks,
the track numbers of which form a contiguous ascending sequence.

The sectors of avolume shall be organized into one or more tracks. A track shall

be a sequence of sectors, the sector numbers of which form a contiguous
ascending sequence. No sector shall belong to more than one track.

OSTA Univearcal Didk Earmat
o HHer HS<TOHAGE

Note: There may be gaps between tracks; that is, the last sector of atrack need

UDF

not be adjacent to the first sector of the next track.
OSTA Universal Disk Format

Variable Packet

An incremental recording method in which each packet in agiven track is of a

VAT ICB

host determined length. Addresses presented to a CD drive are as specified in
Method 1 addressing in Orange Book parts 11 and I11.

A File Entry ICB that describes afile containing a Virtual Allocation Table.

Virtual Address

An address described by a Virtual Allocation Table entry.

VAT

The Virtua Allocation Table (VAT) provides a Logical Block Address for each

Virtual Address. The Virtual Allocation Tableis used with sequential write once
media

1.3.3 Terms

May Indicates an action or featurethat is optional.

Optional Describes a feature that may or may not be implemented. |f implemented, the
feature shall be implemented as described.

Shall Indicates an action or feature that is mandatory and must be implemented to
claim compliance to this standard.

Should Indicates an action or featurethat is optional, but itsimplementation is strongly
recommended.

Reserved A reserved field is reserved for future use and shall be set to zero. A reserved

valueisreserved for future use and shall not be used.

OSTA Univareal Dide
o HHer HST H

0]
]

ol

Ravigdon1 02
~EviH Laa= =i

ul
d

2. Basic Restrictions & Requirements

The following table summarizes several of the basic restrictions and requirements defined
in this specification. These restrictions & requirements as well as additional ones are
described in detail in the following sections of this specification.

Item

Restrictions & Requirements

Logical Sector Size

The Logical Sector Szefor a specific volume shall be the
same asthe physical sector size of the specific volume.

Logical Block Size

The Logical Block Sze for aLogical Volume shall be set to
the logical sector size of the volume or volume set on which
the specific logical volumeresides.

Volume Sets

All media within the same Volume Set shall have the same
physical sector size. Rewritable/Overwritable mediaand
WORM media shall not be mixed in/ be present in the same
volume set.

Firg 32K of Volume Space

Thefirst 32768 bytes of the Volume space shall not be used
for therecording of NSRISO 13346 dructures. Thisarea
shall not be referenced by the Unall ocated Space Descriptor
or any other NSRISO 13346 descriptor. Thisisintended for
use by the native operating system.

Volume Recognition Sequence

The Volume Recognition Sequence as described in part 2 of
ISO/IEC 13346 shall be recorded.

Timestamp

All timestamps shall be recorded in local time. Time zones
shall be recorded on operating systems that support the
concept of atime zone.

Entity Identifiers

Entity Identifiers shall be recorded in accordance with this
document. Unless otherwise specified in this specification
the Entity Identifiers shall contain avalue that uniquely
identifies the implementation.

Descriptor CRCs

CRCs shall be supported and calculated for all Descriptors,
except for the Space Bitmap Descriptor.

File Name Length

Maximum of 255 bytes

Maximum Pathsize

Maximum of 1023 bytes

Extent Length

Maximum Extent Length shall be 2% - Logical Block Sze

Primary V olume Descriptor

There shall be exactly one prevailing Primary V olume
Descriptor recorded per volume.

Anchor Volume Descriptor Pointer

Shall erly-berecorded in at |east 2 of the following 3
locations: 256, N-256, or N-'A/, where N isthe last
addressabl e sector of a volume.

Partition Descriptor

A Partition Access Type of Read-Only, Rewritable,
Overwritable and WORM shall be supported.

There shall be exactly one prevailing Partition Descriptor
recorded per volume, with one exception. For Volume Sets
that consist of single volume, the volume may contain 2
Partitions with 2 prevailing Partition Descriptors only if one
has an access type of read only and the other has an access
type of Rewritable or Overwritable. The Logical Volume
for this volume would consist of the contents of both
partitions.

Logical Volume Descriptor

There shall be exactly one prevailing Logical Volume

OSFA-Universal-BiskFormat

|

Descriptor recorded per Volume Set.—Fhe PartitionMaps
The Logical Volumeldentifier field shall not be null and
should contain aidentifier that aids in the identification of
the logical volume. Specifically, software generating
volumes conforming to this specification shall not set this
field to afixed or trivial value. Duplicate diskswhich are
intended to be identical may contain the same value in this
field. Thisfield is extremely important in logical volume
identification when multiple media are present within a
jukebox. Thisname istypically what is displayed to the
user.

Logical Volume Integrity Descriptor

Shall be recorded.

Unallocated Space Descriptor

A single prevailing Unallocated Space Descriptor shall be
recorded per volume.

File Set Descriptor

There shall be exactly one File Set Descriptor recorded per
Logical Volume on Rewritable/Overwritable media. For
WORM media multiple File Set Descriptors may be
recorded based upon certain restrictions defined in this
document.

ICB Tag

Only strategy types 4 or 4096 shall be recorded.

File Identifier Descriptor

Thetotal length of a File Identifier Descriptor shall not
exceed the size of one Logical Block.

File Entry

Thetotal length of a File Entry shall not exceed the size of
one Logical Block.

Allocation Descriptors

Only Short and Long Allocation Descriptors shal be
recorded.

Allocation Extent Descriptors

The length of any single Allocation Extent Descriptor shall
not exceed the Logical Block Sze.

Unallocated Space Entry

Thetotal length of an Unallocated Space Entry shall not
exceed the size of one Logical Block.

Space Bitmap Descriptor

CRC not required.

Partition Integrity Entry

Shall not be recorded.

Volume Descriptor Sequence Extent

Both the main and reserve volume descriptor sequence
extents shall each have aminimum length of 16 logical
SECtors.

Record Structure

Record structure files, as defined in part 5 of ISO/IEC
13346, shall not be created.

2.1 Part 1- General
2.1.1 Character Sets

The character set used by UDF for the structures defined in this document is the
CS0 character set. The OSTA CSO character set is defined as follows:

OSTA CS0 shall consist of the d-characters specified in the Unicode 1.1 standard
(excluding #FEFF and FFFE) stored in the OSTA Compressed Unicode format
which is defined as follows:

OSTA Compressed Unicode for mat

RBP | Length Name Contents
0 1 Compression 1D Uint8
1 7? Compressed Bit Stream byte

The Compressionl D shall identify the compression algorithm used to compress
the CompressedBitStream field. The following algorithms are currently
supported:

Compression Algorithm

Value Description
0-7 Reserved
8 Value indicates there are 8 bits per character
in the CompressedBitSiream.

9-15 Reserved

16 Value indicates there are 16 bits per
character in the CompressedBitStream.
17-255 Reserved

For a CompressionI D of 8 or 16, the value of the CompressionID shall specify
the number of BitsPerCharacter for the d-characters defined in the
CharacterBitStream field. Each sequence of Compressioni D bitsin the
CharacterBitStream field shall represent an OSTA Compressed Unicode d-
character. The bits of the character being encoded shall be added to the
CharacterBitStream from most- to least-significant-bit. The bits shall be added to
the CharacterBitStream starting from the most-significant-bit of the current byte
being encoded into.
NOTE: Thisencoding causes characters written with a CompressionlD of 16 to
be effectively written in big endian format.

The value of the OSTA Compressed Unicode d-character interpreted as a Uint16
defines the value of the corresponding d-character in the Unicode 1.1 standard.
Refer to appendix on OSTA Compressed Unicode for sample C source codeto
convert between OSTA Compressed Unicode and standard Unicode 1.1.

The Unicode byte-order marks, #FEFF and #FFFE, shall not be used.

2.1.2 OSTA CS0 Char spec
-Chargsec

struct Charspec {
Uint8 CharacterSetType;
byte CharacterSetInfo[63];

}

The Character SetType field shall have the value of 0 to indicate the CSO coded
character set.

The Character SetInfo field shall contain the following byte values with the
remainder of the field set to a value of 0.

HAF, #53, #54, #41, #20, #43, #6F, #6D, #70, #72, #65, #73, #13, #65,
#64, #20, #55, #OE, #69, #63, #OF, #64, #65

The above byte values represent the following ASCII string:
“OSTA Compressed Unicode”

2.1.3 Dstrings

The I SO 13346 standard, as well as this document, has normally defined byte positions
relativeto 0. Insection 7.2.12 of 1SO 13346, dstrings are defined in terms of being
relativeto 1. Since this offers an opportunity for confusion, the following shows what
the definition would be if described relative to O.

7.2.12 Fixed-length char acter fields

A dstring of length nisafield of n bytes where d-characters (1/7.2) arerecorded. The number of
bytes used to record the characters shall be recorded asa Uint8 (1/7.1.1) in byte n-1, where nisthe
length of thefield. The characters shall be recorded starting with the first byte of the field, and any
remaining byte positions after the characters up until byte n-2 inclusive shall be set to #00.

If the number of d-charactersto be encoded is zero, the length of the dstring shall be zero.
NOTE: The length of a dstring includes the compression code byte(2.1.1) except for the
case of azero length string. A zero length string shall be recorded by setting the entire
dstring field to all zeros.

2.1.4 Timestamp

struct timestamp { /* 1SO 13346 1/7.3 */

}

Uint16 TypeAndTimezone;
Uint16 Year;

Uint8 Month;

Uint8 Day;

Uint8 Hour;

Uint8 Minute;

Uint8 Second;

Uint8 Centiseconds;

Uint8 HundredsofMicroseconds;
Uint8 Microseconds,

2.1.4.1 Uint16 TypeAndTimezone;
For the following descriptions Type refers to the most significant 4 bits of this
field, and TimeZone refers to the least significant 12 bits of thisfield.

&

Note:

The time within the structure shall be interpreted as Local Time since Type
shall be equal to ONE for OSTA UDF compliant media.

Type shall be set to ONE to indicate Local Time.

Shall be interpreted as the specifying the time zone for the location when
this field was last modified. If this field contains -2047 then the time zone
has not been specified.

For operating systems that support the concept of atime zone, the offset of
the time zone (in 1 minute increments), from Coordinated Universal Time,
shall be inserted in this field. Otherwise the time zone portion of thisfield

shall be set to -2047.

Time zones West of Coordinated Universal Time have negative offsets.

For example, Eastern Standard Time is -300 minutes; Eastern Daylight
Time is -240 minutes.

2.1.5 Entity Identifier
struct EntitylD { /* 1S0 13346 1/7.4*/

Uint8 Flags;
char Identifier[23];
char | dentifier Suffix[8];

UDF classifies Entity Identifiersinto 3 separate types as follows:

* Domain Entity Identifiers
» UDF Entity Identifiers
* Implementation Entity Identifiers

The following sections describes the format and use of Entity Identifiers based
upon the different types mentioned above.

2.1.5.1 Uint8 Flags
& Self explanatory.

& Shall be set to ZERO.

2.1.5.2 char ldentifier
Unless stated otherwise in this document this field shall be set to an identifier that
uniquely identifies the implementation. This methodology will allow for
identification of the implementation responsible for creating structures recorded
on media interchanged between different implementations.

If an implementation updates existing structures on the media written by other
implementations the updating implementation shall set the Identifier field to a
value that uniquely identifies the updating implementation.

The following table summarizes the Entity Identifier fields defined in the
NSRISO 13346 standard and this document and shows to what values they shall

be set.
Entity |dentifiers
Descriptor Field ID Value Suffix Type

Primary Volume Implementation ID “*Developer ID” Implementation

Descriptor Identifier Suffix

Implementation Use | Implementation ID “*Developer ID” Implementation

VVolume Descriptor Identifier Suffix

Implementation Use | Implementation ID “*UDF LV Info” UDF ldentifier Suffix

VVolume Descriptor

Partition Descriptor Implementation ID “*Developer ID” Implementation
Identifier Suffix

Logical Volume Implementation ID “*Developer ID” Implementation

Descriptor Identifier Suffix

Logical Volume Domain ID "*OSTA UDF DOMAIN Identifier

Descriptor Compliant" Suffix

File Set Descriptor Domain ID "*OSTA UDF DOMAIN Identifier

Compliant" Suffix

File Identifier Implementation 1D “*Developer ID” Implementation

Descriptor Identifier Suffix
(optional)

File Entry Implementation ID “*Developer ID” Implementation
Identifier Suffix

UDF Extended Implementation ID See Appendix UDF ldentifier Suffix

Attribute

Non-UDF Extended Implementation 1D “*Developer I1D” Implementation

Attribute Identifier Suffix

Device Specification | Implementation 1D “*Developer ID” Implementation

Extended Attribute Identifier Suffix

Logical Volume Implementation ID “*Developer ID” Implementation

Integrity Descriptor Identifier Suffix

Partition Integrity Implementation ID N/A N/A

Entry

Virtual Partition Map | Partition Type “*UDF Virtua UDF Identifier Suffix

I dentifier Partition”

Sparable Partition Partition Type “* UDF Sparable UDF Identifier Suffix

Map I dentifier Partition”

Virtual Allocation Entity ID “*UDF Virtua UDF Identifier Suffix

Table Alloc Thl”

Sparing Table Sparing ldentifier “* UDF Sparing UDF Identifier Suffix

Table’

NOTE: The value of the Entity Identifier field is interpreted as a sequence
of bytes, and not as a dstring specified in CS0. For ease of use the values
used by UDF for this field are specified in terms of ASCII character
strings. The actual sequence of bytes used for the Entity Identifiers
defined by UDF are specified in the appendix.

Inthe ID Value column in the above table “ *Developer ID” refersto aEntity Identifier
that uniquely identifies the current implementation. The value specified should be used
when anew descriptor is created. Also, the value specified should be used for an existing
descriptor when anything within the scope of the specified Entityl D field is modified.

NOTE: The value chosen for a“ * Developer ID” should contain enough
information to identify the company and product name for an implementation.
For example, a company called XYZ with a UDF product called DataOne might
choose “ * XYZ DataOne” astheir developer ID. Also in the suffix of their
developer ID they may choose to record the current version number of their
DataOne product. This information is extremely helpful when trying to
determine which implementation wrote a bad structure on a piece of media when
multiple products from different companies have been recording on the media.

The Suffix Type column in the above table defines the format of the suffix to be used with
the corresponding Entity Identifier. These different suffix types are defined in the
following paragraphs.

NOTE: All Identifiers defined in this document (appendix 6.1) shall be registered
by OSTA as UDF Identifiers.

: : 5

2.1.5.3 ldentifier Suffix
The format of the Identifier Suffix field is dependent on the type of the Identifier.

In regard to OSTA Domain Entity Identifiers specified in this document
(appendix 6.1) the Identifier Suffix field shall be constructed as follows:

Domain | dentifier Suffix field format

RBP | Length Name Contents
0 2 UDF Revision uintl6 (=
#01020150)
2 1 Domain Hags Uint8
3 5 Reserved bytes (= #00)

The UDFRevision field shall contain #21620150 to indicate revision 1.6250 of
this document. Thisfield will allow an implementation to detect changes made in
newer revisions of this document. The OSTA Domain Identifiers are only used in
the Logical Volume Descriptor and the File Set Descriptor. The DomainFlags
field defines the following bit flags:

Domain Flags
Bit Description
0 Hard Write-Protect

1 Soft Write-Protect
2-7 Reserved

The SoftWriteProtect flag is a user settable flag that indicates that the volume or
file system structures within the scope of the descriptor in which it resides are
write protected. A SoftWriteProtect flag value of ONE shall indicate user write
protected structures. This flag may be set or reset by the user. The
HardWriteProtect flag is an implementation settable flag that indicates that the
scope of the descriptor in which it resides is permanently write protected. A
HardWriteProtect flag value of ONE shall indicate a permanently write protected
structure. Once set this flag shall not bereset. The HardWriteProtect flag
overrides the SoftWriteProtect flag. These flags are only used in the Logical
Volume Descriptor and the File Set Descriptor. The flags in the Logical Volume
descriptor have precedence over the flags in the File Set Descriptors.

I mplementation use Entity Identifiers defined by UDF (appendix 6-16.1) the
| dentifier Suffix field shall be constructed as follows:

UDF I dentifier Suffix

RBP | Length Name Contents
0 2 UDF Revision uintl6 (=
#01020150)
2 1 OS Class uint8
3 1 OS Ildentifier uint8

| 4 | 4 | Reserved | bytes (= #00)

The contents of the OS Class and OS | dentifier fields are described in the
Appendix on Operating System Identifiers.

For implementation use Entity Identifiers not defined by UDF the I dentifier Suffix
field shall be constructed as follows:

I mplementation | dentifier Suffix

RBP | Length Name Contents
0 1 OS Class Uint8
1 1 OS ldentifier uint8
2 6 Implementation Use Area bytes

NOTE: It is important to understand the intended use and importance of the OS Class and
OS I dentifier fields. The main purpose of these fields isto aid in debugging when
problems are found on a UDF volume. The fields also provide useful information which
could be provided to the end user. When set correctly these two fields provide an
implementation with information such as the following:
* ldentify under which operating system a particular structure was last
modified.
* |dentify under which operating system a specific file or directory was last
modified.
» |If adeveloper supports multiple operating systems with their implementation,
it helps to determine under which operating system a problem may have
occurred.

2.2 Part 3-Volume Structure
2.2.1 Descriptor Tag

struct tag { [* 1SO 13346 3/7.2 */
Uint16 Tagldentifier;
Uint16 DescriptorVersion;
Uint8 TagChecksum,
byte Reserved,;
Uint16 TagSerialNumber;
Uint16 DescriptorCRC;
Uint16 Descriptor CRCL ength;
Uint32 TagL ocation,

}

2.2.1.1 Uint16 TagSerialNumber
&~ lgnored. Intended for disaster recovery.

& Reset to a{pessibhy-ren-unique; value at volume initialization.

The TagSerial Number shall be set to a value that differs from ones previously
recorded, upon volume re-initialization. It is suggested that: TagSerial Number =

((TagSerialNumber of the value rthe prevaiting-Primary Volume Descriptor) + 1
he-usad).

2.2.1.2 Uint16 Descriptor CRCLength
CRCs shall be supported and calculated for each descriptor. The value of this
field shall be set to the-5(Size of the Descriptor) - (Length of Descriptor Tag).
When reading a descriptor the CRC should be validated.

2.2.2 Primary Volume Descriptor

struct PrimaryVolumeDescriptor { /* 1SO 13346 3/10.1 */

struct tag DescriptorTag;

Uint32 V olumeDescriptor SequenceNumber;
Uint32 PrimaryV olumeDescriptorNumber;
dstring Volumel dentifier[32];

Uint16 V olumeSegquenceNumber;

Uint16 MaximumV olumeSequenceNumber;
Uint16 Interchangel evel;

Uint16 M aximumlnter changel evel;
Uint32 CharacterSetList;

Uint32 M aximumCharacter SetList;
dstring VolumeSetldentifier[128];

struct charspec Descriptor Character Set;

struct charspec ExplanatoryCharacter Set;

struct extent_ad VolumeAbstract;
struct extent_ad VolumeCopyrightNotice;

struct Entityl D Applicationl dentifier;

struct timestamp RecordingDateandTime;

struct Entityl D Implementationldentifier;

byte I mplementationUse[64];

Uint32 PredecessorV olumeDescriptor Sequencel ocation;
Uint16 Flags,

byte Reserved[22];

}

2.2.2.1 Uint16 Interchangel evel
&~ Interpreted as specifying the current interchange level (as specified in
ISO/IEC 13346 3/11), of the contents of the associated volume and the
restrictions implied by the specified level.

& If this volume is part of a multi-volume Volume Set then the level shall be
et to 3, otherwise the level shall be set to 2.

I SO 13346 requires an implementation to enforce the restrictions associated with
the specified current Interchange Level. The implementation may change the
value of thisfield as long as it does not exceed the value of the Maximum
Interchange Level field.

2.2.2.2 Uint1l6 Maximumlnterchangel evel
&~ Interpreted as specifying the maximum interchange level (as specified in
| SO/IEC 13346 3/11), of the contents of the associated volume.

& This field shall be set to level 3 (No Redtrictions Apply), unless
specifically given a different value by the user.

NOTE: This field is used to determine the intent of the originator of the volume.
If this field has been set to 2 then the originator does not wish the volume to be
included in a multi-volume set (interchange level 3). The receiver may override
this field and set it to a 3 but the implementation should give the receiver a strict
warning explaining the intent of the originator of the volume.

2.2.2.3 Uint32 Character SetList
&~ Interpreted as specifying the character set(s) in use by any of the structures
defined in Part 3 of 1ISO/IEC 13346 (3/10.1.9).

& Shall be set to indicate support for CS0 only as defined in 2.1.2.

2.2.2.4 Uint32 MaximumCharacter SetList
& Interpreted as specifying the maximum supported character sets (as
gpecified in ISO/IEC 13346) which may be specified in the
CharacterSetList field.

& Shall be set to indicate support for CS0 only as defined in 2.1.2.

2.2.2.5 dstring VolumeSetldentifier
&~ Interpreted as specifying the identifier for the volume set .

& The first 16 characters of this field should be set to a unique value. The
remainder of the field may be set to any allowed value. Specifically,
software generating volumes conforming to this specification shall not set
this field to afixed or trivial value. Duplicate disks which are intended to
be identical may contain the same value in this field.

NOTE: The intended purpose of this is to guarantee Volume Sets with
unique identifiers. The first 8 characters of the unique part should come
from a CSO hexadecimal representation of a 32-bit time value. The
remaining 8 characters are free for implementation use.

2.2.2.6 struct charspec Descriptor Char acter Set
& Interpreted as specifying the character sets allowed in the Volume
Identifier and Volume Set Identifier fields.

& Shall be set to indicate support for CS0 as defined in 2.1.2.

2.2.2.7 struct charspec ExplanatoryCharacter Set
&~ Interpreted as specifying the character sets used to interpret the contents of
the VolumeAbstract and VolumeCopyrightNotice extents.

& Shall be set to indicate support for CS0 as defined in 2.1.2.

2.2.2.8 struct EntitylD I mplementationl dentifier;

)

For more information on the proper handling of this field see the section en-Entity
FelentHier2.1.5.

2.2.3 Anchor Volume Descriptor Pointer

struct AnchorVolumeDescriptorPointer { [* 1SO 13346 3/10.2 */
struct tag DescriptorTag;
struct extent_ad M ainVolumeDescriptor SequenceExtent;
struct extent_ad ReserveVolumeDescriptor SequenceExtent;
byte Reserved[480];

}

NOTE: An AnchorVolumeDescriptor Pointer structure shall erly-be recorded in
at least 2 of the following 3 locations on the media :

* Logical Sector 256.
* Logical Sector (N - 256).
* N

NOTE: Unclosed CD-R media may have an Anchor Volume Descriptor Pointer
recorded at only sector 512. Upon close, CD-R media will conform to the rules
above.

2.2.3.1 struct MainVolumeDescriptor SequenceExtent
The main VolumeDescriptor SequenceExtent shall have a minimum length of 16
logical sectors.

2.2.3.2 struct ReserveVolumeDescriptor SequenceExtent
The reserve VolumeDescriptor SequenceExtent shall have a minimum length of 16
logical sectors.

2.2.4 Logical Volume Descriptor

struct LogicalVVolumeDescriptor { [* 1SO 13346 3/10.6 */
struct tag DescriptorTag;
Uint32 V olumeDescriptor SequenceNumber;
struct charspec Descriptor Character Set;
dstring LogicalVolumel dentifier[128];
Uint32 L ogicalBlockSize,
struct Entityl D Domainldentifier;
byte LogicalVolumeContentsUse[16];
Uint32 MapTableLength;
Uint32 NumberofPartitionM aps;
struct Entityl D Implementationldentifier;
byte ImplementationUse[128];
extent_ad IntegritySequenceExtent,
byte PartitionM apg ?7];

}

2.2.4.1 struct charspec Descriptor Char acter Set

&

&

Interpreted as specifying the character set allowed in the
Logical Volumel dentifier field.

Shall be set to indicate support for CS0 as defined in 2.1.2.

2.2.4.2 Uint32 LogicalBlockSize

&

Interpreted as specifying the Logical Block Sze for the logical volume
identified by this Logical VolumeDescriptor.

This field shall be set to the largest logical sector size encountered
amongst all the partitions on media that constitute the logical volume
identified by this Logical VolumeDescriptor. Since UDF requires that all
Volumes within a VolumeSet have the same logical sector size, the
Logical Block Sze will be the same as the logical sector size of the
Volume.

2.2.4.3 struct EntitylD Domainl dentifier

&

Interpreted as specifying a domain specifying rules on the use of, and
restrictions on, certain fields in the descriptors. If thisfield is all zero then
it isignored, otherwise the Entity Identifier rules are followed. NOTE: If
the field does not contain “*OSTA UDF Compliant” then an
implementation may deny the user accessto the logical volume.

Thisfield shall indicate that the contents of this logical volume conforms
to the domain defined in this document, therefore the Domainldentifier
shall be set to:

"*OSTA UDF Compliant"

As described in the section on Entity Identifier the Identifier Suffix field of
this EntitylD shall contain the revision of this document for which the
contents of the Logical Volume is compatible. For more information on
the proper handling of this field see the-section en-Entity-Hdentifier2.1.5.

NOTE: The IdentifierSuffix field of this EntityID contains
SoftWriteProtect and HardWriteProtect flags. Refer to 2.1.4.3.

2.2.4.4 struct EntitylD I mplementationl dentifier;

)

For more information on the proper handling of this field see the section
on Entity Identifier.

2.2.4.5 struct extent_ad | ntegritySequenceExtent

A value inthisfield isrequired for the Logical Volume Integrity Descriptor. For
Rewriteable or Overwriteable mediathis shall be set to a minimum of 8K bytes.

WARNING: For WORM media thisfield should be set to an extent of some
substantial length. Once the WORM volume on which the Logical Volume
Integrity Descriptor resides is full a new volume must be added to the volume set
since the Logical Volume Integrity Descriptor must reside on the same volume as
the prevailing Logical VVolume Descriptor.

2.2.4.6 byte PartitionMaps

2.2.5

2.2.6

OSTA-Uniy

For the purpose of interchange partition maps shall be limited to Partition Map
type 1, except type 2 maps as described in this document (2.2.8 and 2.2.9).

Unallocated Space Descriptor

struct UnallocatedSpaceDesc { /* 1SO 13346 3/10.8 */
struct tag DescriptorTag;
Uint32 V olumeDescriptor SequenceNumber
Uint32 NumberofAllocationDescriptors,
extent_ad AllocationDescriptors ?79;

}

This descriptor shall be recorded, even if there is no free volume space.
L ogical Volume I ntegrity Descriptor

struct LogicalVolumel ntegrityDesc { /* 1SO 13346 3/10.10 */

struct tag DescriptorTag,

Timestamp RecordingDateAndTime,

Uint32 IntegrityType,

struct extend_ad NextlntegrityExtent,

byte L ogicalVVolumeContentsUse[32],
Uint32 NumberOfPartitions,

Uint32 L engthOfl mplementationUse,
Uint32 FreeSpaceT able] 77,

Uint32 SizeTable[77,

byte ImplementationUse[77|

}

The Logical Volume Integrity Descriptor isastructurethat shall be written any
time the contents of the associated Logical Volume is modified. Through the
contents of the Logical Volume Integrity Descriptor an implementation can easily
answer the following useful questions:

ersal-DiskFormat 20 Revisen1.02

1) Arethe contents of the Logical Volume in a consistent state?

2) When was the last date and time that anything within the Logical
Volume was modified?

3) What isthe total Logical Volume free space in logical blocks?
4) What is the total size of the Logical Volume in logical blocks?

5) What is the next available Uniquel D for use within the Logical
Volume?

6) Has some other implementation modified the contents of the logical
volume since the last time that the original implementation which crested
the logical volume accessed it.

2.2.6.1 byte LogicalVolumeContentsUse
See the section on Logical Volume Header Descriptor for information on the
contents of thisfield.

2.2.6.2 Uint32 FreeSpaceTable

Since most operating systems require that an implementation provide the true free
gpace of aLogical Volume at mount time it is important that these values be
maintained. The optional value of #FFFFFFFF, which indicates that the amount
of available free space is not known, shall not be used.

NOTE: The FreeSpaceTable is guaranteed to be correct only when the Logical
Volume Integrity Descriptor is closed.

2.2.6.3 Uint32 SizeTable

Since most operating systems require that an implementation provide the total
size of aLogical Volume at mount time it isimportant that these values be
maintained. The optional value of #FFFFFFFF, which indicates that the partition
size is not known, shall not be used.

2.2.6.4 byte ImplementationUse
The ImplementationUse area for the Logical Volume Integrity Descriptor shall be
structured as follows:

OSTA Universal Digdk Format
T R =OHaE

SHS

N
=

OSTA-Uniy

| mplementationUse format

RBP | Length Name Contents

0 32 Implementationl D EntitylD

32 4 Number of Files Uint32

36 4 Number of Directories Uint32

40 2 Minimum UDF Read Revision Uintl6

42 2 Minimum UDF Write Revision Uintl6

44 2 Maximum UDF Write Revision Uintl6

46 7 Implementation Use byte

SHS

Implementation ID - The implementation identifier Entityl D of the
implementation which last modified anything within the scope of this
EntitylD. The scope of this Entityl D is the Logical Volume Descriptor,
and the contents of the associated Logical Volume. This field allows an
implementation to identify which implementation last modified the
contents of a Logical Volume.

Number of Files - The current number of files in the associated Logical
Volume. This information is needed by the Macintosh OS. All
implementations shall maintain this information. NOTE: This value does
not include Extended Attributes as part of the file count.

Number of Directories - The current number of directories in the
associated Logical Volume. This information is needed by the Macintosh
OS. All implementations shall maintain this information.

NOTE: Theroot directory shall be included in the directory count.

Minimum UDF Read Revision - Shall indicate the minimum recommended
revision of the UDF specification that an implementation is required to
support to successfully be able to read all potential structures on the
media. This number shall be stored in binary coded decimal format, for
example #01020150 would indicate revision 1.6250 of the UDF
specification.

Minimum UDF Write Revision - Shall indicate the minimum revision of
the UDF specification that an implementation is required to support to
successfully be able to modify all structures on the media. This number
shall be stored in binary coded decimal format, for example #51020150
would indicate revision 1.6250 of the UDF specification.

Maximum UDF Wkite Revision - Shall indicate the maximum revision of
the UDF specification that an implementation which has modified the
media has supported. An implementation shall update this field only if it
has modified the media and the level of the UDF specification it supports
is higher than the current value of this field. This number shall be stored
in binary coded decimal format, for example #91020150 would indicate
revision 1.6250 of the UDF specification.

ersal-Disk-Format 22 Revison1.02

Implementation Use - Contains implementation specific information
unique to the implementation identified by the Implementation ID.

2.2.7 Implemention Use Volume Descriptor
struct ImpUseVolumeDescriptor {

struct tag DescriptorTag;

Uint32 V olumeDescriptor SequenceNumber;
struct Entityl D Implementationldentifier;

byte ImplementationUse[460];

}

This section defines an UDF I mplementation Use Volume Descriptor. This
descriptor shall be recorded on every Volume of aVolume Set. The Volume may
also contain additional I mplementation Use VVolume Descriptors which are
implementation specific. The intended purpose of this descriptor isto aid in the
identification of a VVolume within a VVolume Set that belongs to a specific Logical
Volume.

NOTE: An implementation may still record an additional |mplementation Use

Volume Descriptor in its own format on the media. The UDF Implementation
Use Volume Descriptor does not preclude an additional descriptor.

2.2.7.1 EntitylD Implementation | dentifier
This field shall specify “*UDF LV Info”.

2.2.7.2 bytesImplementation Use
The implementation use area shall contain the following structure:

struct LV Information {

struct charspec LVICharset,

dstring L ogicalVolumel dentifier[128],
dstring LVInfol[36],

dstring LVInfo2[36],

dstring LVInfo3[36],

struct EntitylD ImplementionI D,

bytes ImplementationUse[128];

}
2.2.7.2.1 charspec LVICharset

&~ Interpreted as specifying the character sets allowed in the
LogicalVolumel dentifier and LVInfo fields.

& Shall be set to indicate support for CS0 only as defined in 2.1.2.

OSFA-Universal-BiskFormat 23 Revisen1.02

2.2.7.2.2 dstring LogicalVolumeldentifier
|dentifies the Logical VVolume referenced by this descriptor.

2.2.7.2.3 dstring LVInfol

Thefields LVInfol, LVInfo2 and LVInfo3 should contain additional information
to aid in the identification of the media. For example the LVInfo fields could
contain information such as Owner Name, Organization Name, and Contact
Information.

2.2.7.2.4 sruct EntitylD Implementionl D
Refer to the section on Entity Identifier.

2.2.7.2.5 bytesImplementationUse[128]
This area may be used by the implementation to store any additional
implementation specific information.

OSTA Universal Digdk Format
T R =OHaE

2% NReviean-02
e 4

2.2.8 Virtual Partition M ap
Thisis an extension of 1SO 13346 to expand its scope to include sequentially written
media (eg. CD-R). This extension is for a partition map entry to describe a virtual space.

The Logical Volume Descriptor contains alist of partitions that make up a given volume.
As the virtual partition cannot be described in the same manner as a physical partition, a
Type 2 partition map defined below shall be used.

If aVirtual Partition Map is recorded, then the Logical Volume Descriptor shall contain
at least two partition maps. One partition map, shall be recorded as a Type 1 partition
map. One partition map, shall be recorded as a Type 2 partition map. The format of this
Type 2 partition map shall be as specified in the following table.

L ayout of Type 2 partition map for virtual partition

RBP | Length Name Contents
0 1 Partition Map Type uint8 =2

1 1 Partition Map Length Uint8 = 64

2 2 Reserved #00 bytes

4 32 Partition Type Identifier EntitylD

36 2 Volume Seguence Number uintl6

38 2 Partition Number uintl6

40 24 Reserved #00 bytes

Partition Type |dentifier:

e Flags=0
e |dentifier =*UDF Virtual Partition

e IldentifierSuffix isrecorded asin section 2.1.5.3
* Volume Sequence Number = volume upon which the VAT and Partition isrecorded
e Partition Number = an identification of a partition within the volume identified by the volume
seguence number

2.2.9 Sparable Partition M ap

Certain disk/drive systems do not perform defect management (eg. CD-RW). To provide
an apparent defect-free space for these systems, a partition of type 2 isused. The
partition map defines the partition number, packet size (see section 1.3.2), and size and
locations of the sparing tables. Thistype 2 map is intended to replace the type 1 map
normally found on the media. This map identifies not only the partition number and the
volume sequence number, but also identifies the packet length and the sparing tables. A
Sparable Partition Map shall not be recorded on disk/drive systems that perform defect

management.

OSTA Univearcal Didk Earmat laY = Ravigdon1 02
o HHer HS ~EVISOR=1-92

e £0

L ayout of Type 2 partition map for sparable partition

RBP Length Name Contents
0 1 Partition Map Type Uint8 = 2
1 1 Partition Map Length Uint8 = 64
2 2 Reserved #00 bytes
4 32 Partition Type Identifier EntitylD
36 2 V olume Sequence Number Uint16
38 2 Partition Number Uint16
40 2 Packet Length Uint16 = 32
42 1 Number of Sparing Tables (=N_ST) Uint8
43 1 Reserved #00 byte
44 4 Size of each sparing table Uint32
48 4* N ST Locations of sparing tables Uint32
48+4* N ST |16-4* N ST | Pad #00 bytes

e Partition Type Identifier:
e Flags=0
e |dentifier =*UDF Sparable Partition
» ldentifierSuffix isrecorded asin section 2.1.5.3.

e Partition Number = the number of this partition. Shall identify a Partition Descriptor
associ ated with this partition.

e Packet Length = the number of user data blocks per fixed packet. Shall be set to 32.

e Number of Sparing Tables = the number of redundant tablesrecorded. Thisshall be avaue
in therange of 1 to 4.

e Size of each sparing table = Length, in bytes, allocated for each sparing table.

e Locations of sparing tables = the sart locations of each sparing table specified as a media
block address. Implementations should align the start of each sparing table with the
beginning of a packet. Implementations should record at |east two sparing tables in physically
distant [ocations.

2.2.10 Virtual Allocation Table

The Virtual Allocation Table (VAT) is used on sequentially written media(eg. CD-R) to
give the appearance of randomly writable mediato the system. The existence of this
partition is identified in the partition maps. The VAT shall only be recorded on
sequentially written media (eg. CD-R).

The VAT isamap that translates Virtual Addressesto logical addresses. It shall be
recorded as afile identified by aFile Entry ICB (VAT ICB) which allows great flexibility
in building the table. The VAT ICB isthe last sector recorded in any transaction. The
VAT itself may be recorded at any location.

The VAT shall be identified by a File Entry ICB with afile type of 0. ThisICB shall be
the last valid data sector recorded. Error recovery schemes can find the last valid VAT
by finding ICBs with file type 0 and examining the contents for the Entityl D at the end of
thetable.

OSTA Univearcal Didk Earmat laYog
o HHer HS<TOHAGE

Ravigdon1 02
~EviH LRae

This file, when small, can be embedded in the ICB that describesit. If it islarger, it can
be recorded in a sector or sectors preceding the ICB. The sectors do not have to be
contiguous, which allows writing only new parts of the table if desired. This allows
small incremental updates, even on disks with many directories. Each sector can hold
entries that represent up to 512 directories.

When the VAT is small (asmall number of directories on the disk), the VAT is updated
by writing anew file ICB with the VAT embedded. When the VAT becomestoo large to
fit in the ICB, writing asingle sector with the VAT and a second sector with the ICB is
required. Beyond this point, more than one sector is required for the VAT. However, as
multiple extents are supported, updating the VAT may consist of writing only the sector
or sectorsthat need updating and writing the ICB with pointersto all of the pieces of the
VAT.

The Virtual Allocation Table is used to redirect requests for certain information to the
proper logical location. The indirection provided by this table provides the appearance of
direct overwrite capability. For example, the sector describing the root directory could be
referenced as virtual sector 1. A virtual sector is contained in a partition identified by a
virtual partition map entry. Over the course of updating the disk, the root directory may
change. When it changes, a new sector describing the root directory is written, and its
Logical Block Address is recorded asthe Logical Block Address corresponding to virtual
sector 1. Nothing that references virtual sector 1 needsto change, asit still points to the
most current virtual sector 1 that exists, even though it exists at anew Logical Block
Address.

The use of virtual addressing allows any desired structure to become effectively
rewritable. The structure is rewritable when every pointer that references it does so only
by its Virtual Address. When areplacement structure is written, the virtual reference
does not need to change. The proper entry inthe VAT is changed to reflect the new
Logical Block Address of the corresponding Virtual Address and all virtual references
then point to the new structure. All structuresthat require updating, such as directory
|CBs, shall be referenced by a Virtual Address. As each structure is updated, its
corresponding entry in the VAT 1CB shall be updated.

The VAT shall be recorded as a sequence of Uint32 entries in afile. Each entry shall be
the offset, in sectors, into the physical partition in which the VAT islocated. The first
entry shall be for the virtual partition sector O, the second entry for virtual partition sector
1, etc. The Uint32 entries shall be followed by a EntitylD and a Uint32 entry indicating
the location of the previous VAT ICB.

The entry for the previous VAT ICB allows for viewing the file system as it appeared in
an earlier state. If thisfield is #FFFFFFFFE, then no such ICB is specified.

OSTA Lniv
oY

@
B
9}
/78
m
o)
B
178
)
(

Ravigdon1 02
~EviH Laa= =i

Virtual Allocation Table structure

Offset Name Contents
0 LBA of virtual sector O Uint32
4 LBA of virtual sector 1 Uint32
8 LBA of virtual sector 2 Uint32
e e Uint32
2048 LBA of virtual sector 512 Uint32
s . Uint32
N* 4 Entity Identifier EntitylD
N*4+32 Previous VAT ICB location Uint32

An entry of #FFFFFFFF indicates that the virtual sector is currently unused.
The LBA specified is located in the partition identified by the partition map.
The number of entries in the table can be determined from the VAT file size in the ICB:

Number of entries (N) = w

The Entityl D shall contain:

e Flags=0
e |dentifier =*UDF Virtual Alloc Tbl
e IdentifierSuffix isrecorded asin UDF 2.1.5.3

2.2.11 Sparing Table

Certain disk/drive systems do not perform defect management (eg. CD-RW). To provide
an apparent defect-free space for these systems. Certain media can only be written in
groups of sectors (“packets’), further complicating relocation: a whole packet must be
relocated rather than only the sectors being written. To address this issue a sparable
partition is identified in the partition map, which further identifies the location of the
sparing tables. The sparing table identifies relocated areas on the media. Sparing tables
are identified by a sparable partition map. Sparing tables shall not be recorded on
disk/drive systems that perform defect management.

Sparing Tables point to space allocated for sparing and contains a list of mappings of
defective sectors to their replacements. Separate copies of the sparing tables shall be
recorded in separate packets. All instances of the sparing table shall be kept up to date.

Partitions map logical space to physical space. Normally, thisisalinear mapping where
an offset and alength is specified. A sparable partition is based on this mapping, where
the offset and length of a partition within physical space is specified by a partition
descriptor. The sparing table further specifies an exception list of logical to physical

OSTA Univearcal Didk Earmat O Ravigdon1 02
o HHer HS<TOHAGE ~EviH LRae

mappings. All mappings are one packet in length. The packet size is specified in the

sparable partition map.

Available sparing areas may be anywhere on the media, either inside or outside of a

partition. If located inside a partition, sparable space shall be marked as allocated and

shall be included in the Non-Allocatable Space List. The mapped locations should be

filled in at format time; the original locations are assigned dynamically as errors occur.

Each sparing table shall be structured as shown below.

Sparing Table layout

BP | Length Name Contents
0 16 Descriptor Tag tag=0
16 32 Sparing Identifier EntitylD
48 2 Reallocation Table Length (=RT L) uUintl6
50 2 Reserved #00 bytes
52 4 Sequence Number Uint32
56 8*RT L Map Entry Map Entries

This structure may be larger than a single sector if necessary.

OSTA Lniv
oY

Descriptor Tag
Contains 0, indicating that the contents are not specified by SO 13346.

Sparing ldentifier:
e Flags=0
e |dentifier =*UDF Sparing Table
e ldentifierSuffix isrecorded asin UDF 2.1.5.3

Reallocation Table Length
I ndicates the number of entriesin the Map Entry table.

Sequence Number
Contains anumber that shall be incremented each time the sparing table is updated.

Map Entry
A map entry is described in the table below. Maps shall be sorted in ascending order by the

Original Location field.

M ap Entry description

RBP Length Name Contents

0 4 Original Location Uint32

4 4 Mapped Location Uint32
Original Location

Logical Block Address of the packet to be spared. The address of a packet isthe address of
thefirst user data block of a packet. If thisfield is #7FFFFFFFF, then this entry is available for
sparing. If thisfield is #FFFFFFFO, then the corresponding mapped location is marked as
defective and should not be used for mapping. Origina Locations of #FFFFFFF1 through
#FFFFFFFE are reserved.

OSTA Lniv
oY

@

Mapped Location

Physical Block Address of active data. Reguests to the original packet location are redirected
to the packet location identified here. All Mapped Location entries shall be valid, including
those entries for which the Original Location is #FFFFFFFO, #FFFFFFFF, or reserved. If the
mapped | ocation overlaps a partition, that partition shall have that space marked as all ocated
and that space shall be part of the Non-Allocatable Space list.

9}
/78
N
o}
B
o
)]
D
0
)
(0
)
5
i
o)
S

2.3 Part 4 - File System
2.3.1 Descriptor Tag

struct tag { [* 1S0O 13346 4/7.2*/
Uint16 Tagldentifier;
Uintl6 DescriptorVersion;
Uint8 TagChecksum,
byte Reserved,;
Uint16 TagSerialNumber;
Uint16 DescriptorCRC;
Uint16 Descriptor CRCL ength;
Uint32 TagLocation;

}

2.3.1.1 Uint1l6 TagSerialNumber
&~ lgnored.

& Reset to a nen-unique value at volume initialization.

The TagSerialNumber shall be set to a value that differs from ones previously
recorded, upon volume re-initialization. The intended use of this field is for
disaster recovery. The TagSerialNumber for all descriptors in Part 4 should be
the same as the serial number used in the associated File Set Descriptor

2.3.1.2 Uint16 Descriptor CRCLength
CRCs shall be supported and calculated for each descriptor, unless otherwise
noted. The value of this field shall be set to-thes: (Size of the Descriptor) -
(Length of Descriptor Tag). When reading a descriptor the CRC should be
validated.

2.3.2 File Set Descriptor

struct FileSetDescriptor { [* 1SO 13346 4/14.1 */

struct tag DescriptorTag;

struct timestamp RecordingDateandTime;
Uint16 Interchangel evel;

Uint16 M aximumlnter changel evel;
Uint32 Character SetList;

Uint32 MaximumCharacter SetList;
Uint32 FileSetNumber;

Uint32 FileSetDescriptorNumber;
struct charspec L ogicalVolumel dentifier Character Set;
dstring LogicalVolumel dentifier[128];
struct charspec FileSetCharacter Set;

OSTA Universal Digdk Format
T R =OHaE

= Did 31

dstring FileSetldentifer[32];

dstring CopyrightFilel dentifier[32];
dstring AbstractFileldentifier[32];
struct long_ad RootDirectoryl CB;

struct Entityl D Domainldentifier;

struct long_ad NextExtent;

byte Reserved[48];

}

On-rewritableloverwritable-media—only one FileSet descriptor shall be recorded.
On WORM media, multiple FileSet-descripters may be recorded.

The UDF provision for multiple File Setsis as follows:

» Multiple FileSets are only allowed on WORM media

* Thedefault FileSet shall be the one with the highest FileSetNumber .

* Only the default FileSet may be flagged as writable. All other FileSets
in the sequence shall be flagged HardWriteProtect (see EntitylD
definition).

* No writable FileSet shall reference any metadata structures which are
referenced (directly or indirectly) by any other FileSet. Writable
FileSets may, however, reference the actual file data extents.

Within a FileSet on WORM, if al files and directories have been recorded with
|CB strategy type 4, then the DomainID of the corresponding FileSet Descriptor
shall be marked as HardWriteProtected.

The intended purpose of multiple FileSets on WORM is to support the ability to
have multiple archive images on the media. For example one FileSet could
represent a backup of a certain set of information made at a specific point in time.
The next FileSet could represent another backup of the same set of information
made at alater point in time.

2.3.2.1 Uint16 Interchangel evel

OSTA-Uniy

&~ Interpreted as specifying the current interchange level (as specified in
ISO/IEC 13346 4/15), of the contents of the associated file set and the
restrictions implied by the specified level.

a1 Shall be set to alevel of 3.

An implementation shall enforce the restrictions associated with the specified
current Interchange Level.

ersal-DiskFormat 32 Revisen1.02

2.3.2.2 Uint16 Maximumlnterchangel evel
&~ Interpreted as specifying the maximum interchange level of the contents of
the associated file set. This value restricts to what the current Interchange
Level field may be set.

& Shall be set to level 3.

2.3.2.3 Uint32 Character SetList
&~ Interpreted as specifying the character set(s) specified by any field, whose
contents are specified to be a charspec, of any descriptor specified in Part
4 of ISO/IEC 13346 and recorded in the file set described by this
descriptor.

& Shall be set to indicate support for CS0 only as defined in 2.1.2.

2.3.2.4 Uint32 MaximumCharacter SetL ist
& Interpreted as specifying the maximum supported character set in the
associated file set and the restrictions implied by the specified level.

& Shall be set to indicate support for CS0 only as defined in 2.1.2.

2.3.2.5 struct charspec Logical Volumel dentifier Character Set
& Interpreted as specifying the d-characters allowed in the Logical Volume
|dentifier field.

& Shall be set to indicate support for CS0 as defined in 2.1.2.

2.3.2.6 struct charspec FileSetCharacter Set
& Interpreted as specifying the d-characters allowed in dstring fields defined
in Part 4 of 1SO 13346 that are within the scope of the FileSetDescriptor.

& Shall be set to indicate support for CS0 as defined in 2.1.2.

2.3.2.7 struct EntitylD Domainl dentifier
&~ Interpreted as specifying a domain specifying rules on the use of, and
restrictions on, certain fields in the descriptors. If thisfield is NULL then
it isignored, otherwise the Entity Identifier rules are followed.

& Thisfield shall indicate that the scope of this File Set Descriptor conforms
to the domain defined in this document, therefore the
| mplementationl dentifier shall be set to:
"*OSTA UDF Compliant"

OSFA-Universal-BiskFormat 33 Revisen1.02

2.3.3

As described in the section on Entity Identifier the Identifier Suffix field of
this EntitylD shall contain the revision of this document for which the
contents of the Logical Volume is compatible. For more information on
the proper handling of this field see the section on Entity Identifier.

NOTE: The IdentifierSuffix field of this EntityID contains
SoftWriteProtect and HardWriteProtect flags.

Partition Header Descriptor

struct PartitionHeaderDescriptor { /* 1SO 13346 4/14.3 */

struct short_ad UnallocatedSpaceT able;
struct short_ad UnallocatedSpaceBitmap;
struct short_ad PartitionintegrityTable;
struct short_ad FreedSpaceT able;

struct short_ad FreedSpaceBitmap;

byte Reserved[88];

}

As a point of clarification the logical blocks represented as Unallocated are
blocks that are ready to be written without any preprocessing. In the case of
Rewritable media this would be awrite without an erase pass. The logical blocks
represented as Freed are blocks that are not ready to be written, and require some
form of preprocessing. In the case of Rewritable media this would be a write
with an erase pass.

NOTE: The use of Space Tables or Space Bitmaps shall be consistent across a
Logical Volume. Space Tables and Space Bitmaps shall not both be used at the
same time within a Logical VVolume.

2.3.3.1 struct short_ad Partitionl ntegrityTable

OSTA-Uniy

Shall be set to all O-szeros since Partitionl ntegrityEntrys are not used.

aersal Disk Format
FSaHS<=0HAGE

|

2.3.4 Fileldentifier Descriptor

struct FileldentifierDescriptor { [* 1S0 13346 4/14.4 */
struct tag DescriptorTag;
Uint16 FileVersonNumber;
Uint8 FileCharacteristics;
Uint8 LengthofFilel dentifier;

struct long_ad ICB,;
—Uintl6——LengtheflmplementationUse;

Uintl6 L engthOfl mplementationUse;

byte ImplementationUse[77];

char Fileldentifier[?77];

byte Padding[77;
}
The File Identifier Descriptor shall be restricted to the length of one Logical
Block.

2.3.4.1 Uintl6 FileVersionNumber
& There shall be only one version of afile as specified below with the value
being set to 1.

= Shall be set to 1.

2.3.4.2 Uint1l6 Lengthof ImplementationUse
&~ Shall specifiy the length of the ImplementationUse field.

& Shall specifiy the length of the ImplementationUse field. This field may
be ZERO, indicating that the ImplementationUse field has not been used.

2.3.4.3 byte ImplementationUse
&~ |If the LengthoflmplementationUse field is non ZERO then the first 32
bytes of this field shall be interpreted as specifying the implementation
identifier EntitylD of the implementation which last modified the File
|dentifier Descriptor.

& If the Lengthofl mplementationUse field is non ZERO then the first 32
bytes of this field shall be set to the implementation identifier Entityl D of
the current implementation.

NOTE: For additional information on the proper handling of this field refer to
the section on Entity Identifier.

This field allows an implementation to identify which implementation last created
and/or modified a specific File Identifier Descriptor .

OSTA-Universal Disk Format 35 Revigen1.02

2.3.5 ICB_Tag

TFag

struct icbtag { /* 1SO 13346 4/14.6 */
Uint32 PriorRecordedNumberofDirectEntries;
Uint16 Strategy Type;
byte StrategyParameter[2];
Uint16 Numberof Entries;
byte Reserved,;
Uint8 FileType;
Lb addr Parentl CBL ocation;
Uint16 Flags;

}

2.3.5.1 Uint16 StrategyType
&~ The contents of this field specifies the ICB strategy type used. For the
purposes of read access an implementation shall support strategy types 4
and 4096.

= Shall be set to 4 or 4096.

NOTE: Strategy type 4096, which is defined in the appendix, is intended for
primary use on WORM media, but may also be used on rewritable and
overwritable media.

2.3.5.2 Uint8 FileType
As a point of clarification a value of 5 shall be used for a standard byte
addressable file, not 0.

2.3.5.3 Parentl CBL ocation
The use of thisfield by is optional.
NOTE: In1SO 13346-4/14.6.7 it statesthat “If this field contains O, then no such
ICB is specified.” Thisisaflaw inthe ISO standard in that an implementation
could store acirectoryn ICB at logical block address 0. Therefore, if you decide
to use thisfield, do not store adirectoryn ICB at logical block address 0.

2.3.5.4 Uint16 Flags
Bits 0-2: These bits specify the type of allocation descriptors used. Refer to the
section on Allocation Descriptors for the guidelines on choosing which type of
allocation descriptor to use.

OSFA-Universal-BiskFormat 36 Revisen1.02

Bit 3 (Sorted):
¢~ For OSTA UDF compliant media this bit shall indicate (ZERO) that
directories may be unsorted.

& Shall be set to ZERO.

Bit 4 (Non-relocatable):

&~ For OSTA UDF compliant mediathis bit may indicate (ONE) that the file
is non-relocatable. An implementation may reset this bit to ZERO to
indicate that the file is relocatable if the implementation can not assure
that the file will not be relocated.

a1 Should be set to ZERO.

Bit 9 (Contiguous):

&~ For OSTA UDF compliant mediathis bit may indicate (ONE) that the file
is contiguous. An implementation may reset this bit to ZERO to indicate
that the file may be non-contiguous if the implementation can not assure
that the file is contiguous.

a1 Should be set to ZERO.

Bit 11 (Transformed):
&~ For OSTA UDF compliant mediathis bit shall indicate (ZERO) that no
transformation has taken place.

& Shall be set to ZERO.

The methods used for data compression and other forms of data transformation
shattmight be addressed in a future OSTA document.

Bit 12 (Multi-versions):
&~ For OSTA UDF compliant mediathis bit shall indicate (ZERO) that multi-
versioned files are not present.

& Shall be set to ZERO.

OSTA Universal Digdk Format
T R =OHaE

SHS

w
~l

2.3.6 FileEntry

struct FileEntry { [* 1SO 13346 4/14.9 */
struct tag DescriptorTag;
struct icbtag ICBTag;
Uint32 Uid;
Uint32 Gid;
Uint32 Permissions;
Uint16 FileLinkCount;
Uint8 RecordFor mat;
Uint8 RecordDisplayAttributes;
Uint32 RecordL ength;
Uint64 InformationL ength;
Uint64 LogicalBlocksRecorded,;
struct timestamp AccessTime;

struct timestamp ModificationTime;
struct timestamp AttributeTime;

Uint32 Checkpoint;
struct long_ad ExtendedAttributel CB;
struct Entityl D Implementationldentifier;
Uinte4 Uniquel D,
Uint32 L engthofExtendedAttributes;
Uint32 LengthofAllocationDescriptors;
byte ExtendedAttributes ?77;
byte AllocationDescriptors 77;
}
NOTE: The total length of a FileEntry shall not exceed the size of one logical
block.

2.3.6.1 Uint8 RecordFor mat;
&~ For OSTA UDF compliant media this bit shall indicate (ZERO) that the
structure of the information recorded in the file is not specified by this
field.

& Shall be set to ZERO.
2.3.6.2 Uint8 RecordDisplayAttributes;
&~ For OSTA UDF compliant media this bit shall indicate (ZERO) that the
structure of the information recorded in the file is not specified by this
field.

& Shall be set to ZERO.

OSFA-Universal-BiskFormat 38 Revisen1.02

2.3.6.3 Uint8 RecordLength;

&~ For OSTA UDF compliant media this bit shall indicate (ZERO) that the

structure of the information recorded in the file is not specified by this
field.

& Shall be set to ZERO.

2.3.6.4 struct EntitylD I mplementationl dentifier;

)

Refer to the section on Entity I dentifier.

2.3.6.5 Uint64 UniquelD

2.3.7

For the root directory of afile set thisvalue shall be set to ZERO.

It isrequired that this value be maintained and unique for every file and directory
in the LogicalVVolume. This includes FileEntry descriptors defined for Extended
Attribute spaces. The FileEntry for the Extended Attribute space shall contain the
same Uniquel D as the file to which it is attached.

NOTE: The Uniquel D values 1-15 shall be reserved for the use of Macintosh
implementations.

Unallocated Space Entry
struct UnallocatedSpaceEntry { [* 1SO 13346 4/14.11 */
struct tag DescriptorTag;
struct ichtag ICBTag;
Uint32 LengthofAllocationDescriptors;
byte AllocationDescriptor 5 ?77;

}

NOTE: The maximum length of an UnallocatedSpaceEntry shall be one Logical
Block.

2.3.7.1 byte AllocationDescriptors

Only Short Allocation Descriptors shall be used.

NOTE: The upper 2 bits of the extent length field in allocation descriptors
gpecify an extent type (1SO 13346 4/14.14.1.1). For the allocation descriptors
specified for the UnallocatedSpaceEntry the type shall be set to a value of 1 to
indicate extent allocated but not recorded, or shall be set to a value of 3 to
indicate the extent is the next extent of allocation descriptors. This next extent of
allocation descriptors shall be limited to the length of one Logical Block.

OSTA-Universal Disk Fermat 39 Revisionl.02

SHS

2.3.8

AllocationDescriptors shall be ordered sequentially in ascending location order.
No overlapping AllocationDescriptors shall exist in the table. For example,
ad.location = 2, ad.length = 2048 (logical block size = 1024) then
nextad.location = 3 is not alowed. Adjacent AllocationDescriptors shall not be
contiguous. For example ad.location = 2, ad.length = 1024 (logical block size =
1024), nextad.location = 3 is not allowed and would instead be a single
AllocationDescriptor, ad.location = 2, ad.length = 2048. The only case where
adjacent AllocationDescriptors may be contiguous is when the ad.length of one of
the adjacent AllocationDescriptors is equal to the maximum
AllocationDescriptors length.

Space Bitmap Descriptor
struct SpaceBitmap { [* 1SO 13346 4/14.11 */
struct Tag DescriptorTag;
Uint32 NumberOfBits,
Uint32 NumberOfBytes;
byte Bitmap[?77];
}

2.3.8.1 struct Tag Descriptor Tag

2.39

OSTA-Uniy

The calculation and maintenance of the DescriptorCRC field of the Descriptor
Tag for the SpaceBitmap descriptor is optional. If the CRC is not maintained then
both the Descriptor CRC and Descriptor CRCLength fields shall be ZERO.

Partition I ntegrity Entry

struct Partitionl ntegrityEntry { [* 1S0O 13346 4/14.13 */
struct tag DescriptorTag;
struct icbtag ICBTag;
struct timestamp RecordingTime;
Uint8 Integrity Type;
byte Reserved[175];
struct Entityl D I mplementationl dentifier;
byte I mplementationUse[256];

}

With the functionality of the Logical Volume Integrity Descriptor this descriptor
is not needed, therefore this descriptor shall not be recorded.

ereal-DieFarmat 40 NReviean-02

2.3.10 Allocation Descriptors

When constructing the data area of afile an implementation has several types of
allocation descriptors from which to choose. The following guidelines shall be followed
in choosing the proper allocation descriptor to be used:

Short Allocation Descriptor - For aLogical Volume that resides on asingle
Volume with no intent to expand the Logical Volume beyond the single volume
Short Allocation Descriptors should be used. For example a Logical Volume
created for a stand alone drive.

NOTE: Refer to section 2.2.2.2 on the MaximuminterchangelLevel.

Long Allocation Descriptor - For aLogical Volume that resides on asingle
Logical Volume with intent to later expand the Logical Volume beyond the single
volume, or aLogical Volume that resides on multiple Volumes Long Allocation
Descriptors should be used. For example a Logical Volume created for a
jukebox.

NOTE: There isabenefit of using Long Allocation Descriptors even on asingle
volume, which is the support of tracking erased extents on rewritable media. See
section 2.3.10.1 for additional information.

For both Short and Long Allocation Descriptors, if the 30 least significant bits of the
ExtentLength field is O, then the 2 most significant bits shall be O.

2.3.10.1 Long Allocation Descriptor

struct long_ad { [* 1SO 13346 4/14.14.2 */
Uint32 ExtentLength;
Lb addr ExtentLocation;
byte I mplementationUse[6];

}

To adlow use of the ImplementationUse field by UDF and also by
implementations the following structure shall be recorded within the 6 byte
Implementation Use field.

struct ADI npUse

{
Uint16 fl ags;
byte i nmpUse[4];

/*

* ADI npUse Flags -(NOTE: bits 1-15 reserved for future use by UDF)
*/

#defi ne EXTENTEr ased (0x01)

OSTA Universal Digdk Format 11 L
T AerSaHS=0HSE Revison-02

In the interests of efficiency on Rewritable media that benefits from
preprocessing, the EXTENTErased flag shall be set to ONE to indicate an erased
extent. This applies only to extents of type not recorded but allocated.

2.3.11 Allocation Extent Descriptor

struct AllocationExtentDescriptor { /* 1SO 13346 4/14.5 */
struct tag DescriptorTag;

Uint32 PreviousAllocationExtentL ocation;

Uint32 LengthOfAllocationDescriptors;
}
NOTE:. AllocationDescriptor extents shall be a maximum of one logical block in
length.

2.3.11.1 Uint12 PreviousAllocationExtentL ocation
& The previous allocation extent location shall not be used as specified
below.

& Shall be set to 0.

2.3.12 Pathname
2.3.12.1 Path Component

struct PathComponent { [* 1SO 13346 4/14.16.1 */
Uint8 ComponentType;
Uint8 Lengthof Component| dentifier;
Uint16 ComponentFileVersonNumber;
char Componentldentifier|];
}

2.3.12.1.1 Uintl6 ComponentFileVersonNumber
&~ There shall be only one version of afile as specified below with the value
being set to ZERO.

a1 Shall be set to ZERO.

242.3.13 Part 5-Record StructureNon-Allocatable Space List

| SO 13346 does not provide for a mechanism to describe defective areas on media or
areas not usable due to alocation outside of the file system. The Non-Allocatable Space
List provides a method to describe space not usable by the file system. The Non-

OSTFA-YUniversal-BisktFoermat 42 Revisen1.02

Allocatable Space List shall be recorded only on media systems that do not do defect
management (eg. CD-RW).

The Non-Allocatable Space List shall be generated at format time. All space indicated by
the Non-Allocatable Space List shall also be marked as allocated in the free space map.
The Non-Allocatable Space List shall be recorded as afile of the root directory. Thefile
name “Non-Allocatable Space” (#4E, #6F, #6E, #2D, #41, #6C,

#6C HOF #61,#74 #61,#62 #6C #65, #20, #70, #61, #63, #65) shall be used. Thefile shall
be marked with the attributes Hidden (bit O of file characteristics set to ONE) and System
(bit 10 of ICB flagsfield set to ONE). The name may be recorded in any legal word size.
The information length of this file shall be zero. This file shall have all Non-Allocatable
sectors identified by its allocation extents. The allocation extents shall indicate that each
extent is allocated but not recorded. This list shall include both defective sectors found at
format time and space allocated for sparing at format time.

24 Part 5 - Record Structure
Record structure files shall not be created. If they are encountered on the media and they

are not supported by the implementation they shall be treated as an uninterpreted stream
of bytes.

OSTA Univearcal Didk Earmat Ravigdon1 02
o HHer HS<TOHAGE ~EviH LRae

f
&
4.

3. System Dependent Requirements

3.1 Part1- General
3.1.1 Timestamp

struct timestamp { /* 1SO 13346 1/7.3 */

Uint16 TypeAndTimezone;

Uint16 Y ear;

Uint8 Month;

Uint8 Day;

Uint8 Hour;

Uint8 Minute;

Uint8 Second;

Uint8 Centiseconds;

Uint8 HundredsofM icroseconds,
Uint8 Microseconds;

}

3.1.1.1 Uint8 Centiseconds;
&~ For operating systems that do not support the concept of
centiseconds the implementation shall ignore this field.

& For operating systems that do not support the concept of
centiseconds the implementation shall set thisfield to ZERO.

3.1.1.2 Uint8 HundredsofMicr oseconds;
&~ For operaing systems that do not support the concept of hundreds
of Microseconds the implementation shall ignore this field.

& For operating systems that do not support the concept of a
hundreds of Microseconds the implementation shall set thisfield to
ZERO.

3.1.1.3 Uint8 Microseconds;
&~ For operating systems that do not support the concept of
microseconds the implementation shall ignore thisfield.

& For operating systems that do not support the concept of
microseconds the implementation shall set this field to ZERO.

OSTA-Universal Disk Fermat

A/ NReviean-02
e a4

3.2 Part 3- Volume Structure
3.2.1 Logical Volume Header Descriptor

struct LogicalVolumeHeaderDesc { /* 1SO 13346 4/14.15*/
Uinte4 Uniquel D,
bytes reserved| 24]

}
3.2.1.1 Uint64 UniquelD
This field contains the next Uniquel D value which should be used.

NOTE: For compatibility with Macintosh systems implementations should keep
this value less than the maximum value of aInt32 (2= - 1).

OSTA-Universal Disk Fermat 45

SHS

3.3 Part 4 - File System
3.3.1 Fileldentifier Descriptor

struct FileldentifierDescriptor { [* 1S0 13346 4/14.4 */
struct tag DescriptorTag;
Uint16 FileVersionNumber;
Uint8 FileCharacteristics;
Uint8 LengthofFileldentifier;
struct long_ad ICB,;
Uint16 Lengthofl mplementationUse;
byte I mplementationUse[77);
char Fileldentifier[?7];
byte Padding[?77;
}

NOTE: All UDF directories shall include a File Identifier Descriptor that
indicates the location of the parent directory. The File Identifier Descriptor
describing the parent directory shall be the first File Identifier Descriptor recorded
in the directory. The parent directory of the Root directory shall be Root, as
stated in SO 13346-4, section 8.6

3.3.1.1 Uint8 FileCharacteristics
The following sections describe the usage of the FileCharacteristics under
various operating systems.

3.3.111 MSDOS-, 052, Windows 95, Windows NT, Macintosh
&~ |f Bit O isset to ONE, thefile shall be considered a"hidden” file.
If Bit 1 is set to ONE, the file shall be considered a "directory."
If Bit 2 is set to ONE, the file shall be considered "deleted.”
If Bit 3 isset to ONE, the ICB field within the associated Fileldentifier
structure shall be considered as identifying the "parent" directory of
the directory that this descriptor isrecorded in

e If the file is designated as a"hidden" file, Bit O shall be set to ONE.
If the file is designated as a "directory™,," Bit 1 shall be set to ONE.
If the file is designated as "deleted";," Bit 2 shall be set to ONE.

3.3.1.1.2 UNIX
Under UNIX these bits shall be processed the same as specified in

3.3.1.1.1., except for hidden files which will be processed as normal non-
hidden files.

OSTA Universal Digdk Format
T R =OHaE

= Dis 46

3.3.2 ICB Tag

struct icbtag { /* 1SO 13346 4/14.6 */

Uint32 PriorRecordedNumberofDirectEntries;
Uint16 StrategyType;

byte StrategyParameter[2];

Uint16 Numberof Entries;

byte Reserved,;

Uint8 FileType;

Lb addr Parentl CBLocation;

Uint16 Flags;

3.3.2.1 Uint16 Flags

3.3.2.1.1 MSDOS, 052, Windows 95, Windows NT
—0OS2

Bits6 & 7 (Setuid & Setgid):

&~ lgnored.

& In the interests of maintaining security under environments which do
support these bits; bits 6 and 7 shall be set to ZERO if any one of the
following conditions are true:

« Afileiscreated.
« The attributes/permissions associated with a file, are modified .

« A fileis written to (the contents of the data associated with a file
are modified).

Bit 8 (Sticky):
&~ lgnored.

& Shall be set to ZERO.
Bit 10 (System):
&~ Mapped to the MS-DOS/ OS/2 system bit.

& Mapped from the MS-DOS / OS/2 system bit.

OSTA Universal Digdk Format 2=7 L
T AerSaHS=0HSE 4/ Revison-02

3.3.2.1.2 Macintosh

Bits6 & 7 (Setuid & Setgid):
&~ lgnored.

& In the interests of maintaining security under environments which do
support these bits; bits 6 and 7 shall be set to ZERO if any one of the
following conditions are true:

« Afileiscreated.

« The attributes/permissions associated with a file, are modified .

« A fileis written to (the contents of the data associated with a file
are modified).

Bit 8 (Sticky):
&~ lgnored.

& Shall be set to ZERO.

Bit 10 (System):
&~ lgnored.

& Shall be set to ZERO.
3.3.2.1.3 UNIX
Bits 6, 7 & 8 (Setuid, Setgid, Sticky):
These bits are mapped to/from the corresponding standard UNIX file system bits.

Bit 10 (System):
&~ lgnored.

& Shall be set to ZERO upon file creation only, otherwise maintained.

OSTA Universal Digdk Format
T R =OHaE

= Dis 48

3.3.3 FileEntry

struct FileEntry {

* 1SO 13346 4/14.9 */

struct tag DescriptorTag;

struct icbtag ICBTag;

Uint32 vid;

Uint32 Gid;

Uint32 Permissions,

Uint16 FileLinkCount;

Uint8 RecordFormat;

Uint8 RecordDisplayAttributes;
Uint32 RecordLength;

Uint64 InformationL ength;
Uint64 LogicalBlocksRecorded,;

struct timestamp
struct timestamp
struct timestamp
Uint32

AccessTime;
ModificationTime;
AttributeTime;
Checkpoint;

struct long_ad ExtendedAttributel CB;

struct Entityl D

I mplementationl dentifier;

Uinte4 Uniquel D,

Uint32 L engthofExtendedAttributes;

Uint32 LengthofAllocationDescriptors;

byte ExtendedAttributeq ?77];

byte AllocationDescriptors 74;
}
NOTE: The total length of a FileEntry shall not exceed the size of one logical
block.

3.3.3.1 Uint32 Uid
&~ For operaing systemsthat do not support the concept of a user identifier
the implementation shall ignore this field. For operating systems that do
support thisfield avalue of 2% - 1 shall indicate an invalid UID, otherwise
the field contains avalid user identifier.

& For operating systems that do not support the concept of a user identifier
the implementation shall set thisfield to 2% - 1 to indicate an invalid UID,
unless otherwise specified by the user.

3.3.3.2 Uint32 Gid
&~ For operating systemsthat do not support the concept of a group identifier
the implementation shall ignore this field. For operating systems that do
support thisfield avalue of 2% - 1 shall indicate an invalid GID, otherwise
the field contains avalid group identifier.

OSTA Universal Digdk Format
T R =OHaE

= Dis 49

& For operating systems that do not support the concept of a group identifier
the implementation shall set thisfield to 22 - 1to indicate an invalid GID,
unless otherwise specified by the user.

3.3.3.3 Uint32 Permissions;

/* Definitions: */

/* Bit for a File for a Directory *5
/* ___ *
/* Execute May execute file May search directory */
/* Wite May change file contents May create and delete files */
/* Read May exam ne file contents My list files in directory */
/* ChAttr May change file attributes May change dir attributes */
/* Delete May delete file May del ete directory */

#defi ne OTHER_Execut e 0x00000001
#define OTHER Wite 0x00000002
#defi ne OTHER _Read 0x00000004
#defi ne OTHER_ChAttr 0x00000008
#defi ne OTHER Del ete 0x00000010
#def i ne GROUP_Execute 0x00000020
#define GROUP_Wite 0x00000040
#defi ne GROUP_Read 0x00000080
#defi ne GROUP_ChAttr 0x00000100
#defi ne GROUP_Del ete 0x00000200
#defi ne OMNER_Execut e 0x00000400
#defi ne OMNER_Wite 0x00000800
#defi ne OWNER_Read 0x00001000
#defi ne OWNER_ChAttr 0x00002000
#defi ne OMNER _Del ete 0x00004000

The concept of permissions which deals with security is not completely portable between
operating systems. This document attempts to maintain consistency among
implementations in processing the permission bits by addressing the following basic
issues:

1. How should an implementation handle Owner, Group and Other permissions
when the operating system has no concept of User and Group 1ds?

2. How should an implementation process permission bits when encountered,
specifically permission bits that do not directly map to an operating system
supported permission bit?

3. What default values should be used for permission bits that do not directly
map to an operating system supported permission bit when creating a new
file?

User, Group and Other
In general, for operating systems that do not support User and Group Ids the following
algorithm should be used when processing permission bits:

When reading a specific permission, thelogical OR of all three (owner, group,
other) permissions should be the value checked. For example a file would be
considered writable if the logical OR of OWNER_Write, GROUP_Write and
OTHER_Write was equal to one.

0

When setting a specific permission the implementation should set al three

(owner, group, other) sets of permission bits. For example to mark afile as
writable the OWNER_Write, GROUP_Write and OTHER_Write should all be set
to one.

Processing Permissions
I mplementation shall process the permission bits according to the following table which
describes how to process the permission bits under the operating systems covered by this
document. The table addresses the issues associated with permission bits that do not
directly map to an operating system supported permission bit.

Read e Fhefemay-beread E E E E
Read directory Fhedirectory-may-beread E E E E
Write file FhefHesconteatsmay-be E E E E
.
Write directory FHes-ersabdirectoriesmay-be E E E E
created;—deleted-or renamed
Execute e Fhefieby-beexecuted: } } } E
Execute directory Fhedirectory-may-be-searched E E E E
: e
stbdirectory-
Attribute e FhefHespermissionsmay-be E E E E
changed:
Attribute directory Fhedirectory-s-permissens E E E E
may-be-changed:
Delete e Fhefile-may-be-deleted: E E E E
Delete directory Fhedirectory-may-be-deletee: E E E E
Permission File/Directory Description DOS | OS2 | Win | Win | Mac | UNIX
D | NT | OS
Read file Thefile may beread E E E E E E
Read directory The directory may beread E E E E E E
Write file Thefil€ s contents may be modified E E E E E E
Write directory Files or subdirectories may be created, E E E E E E
deleted or renamed
Execute file Thefile by be executed. 1 1 1 1 1 E
Execute directory The directory may be searched for a E E E E E E
specific file or subdirectory.
Attribute file Thefil€ s permissions may be changed. E E E E E E
Attribute directory The directory’ s permissions may be E E E E E E
changed.
Delete file Thefile may be deleted. E E E E E E
Dd e_te cjrectory The cjrectory may be delet;.d. E E E E E E
E - Enforce, | - Ignore

The Execute bit for a directory, sometimes referred to as the search bit, has special
meaning. This bit enables a directory to be searched, but not have its contents listed. For
example assume a directory called PRIV ATE exists which only has the Execute
permission and does not have the Read permission bit set. The contents of the directory

PRIVATE can not belisted. Assume there isafile within the PRIVATE directory called

README. The user can get access to the README file since the PRIVATE directory is
searchable.

To be ableto list the contents of a directory both the Read and Execute permission bits
must be set for the directory. To be able to create, delete and rename afile or
subdirectory both the Write and Execute permission bits must be set for the directory.

To get abetter understanding of the Execute bit for adirectory reference any UNIX book
that coversfile and directory permissions. The rules defined by the Execute bit for a
directory shall be enforced by all implementations.

NOTE: To be able to delete afile or subdirectory the Delete permission bit for the file or
subdirectory must be set, and both the Write and Execute permission bits must be set for
the directory it occupies.

Default Permission Values

For the operating systems covered by this document the following table describes what
default values should be used for permission bits that do not directly map to an operating
system supported permission bit when creating a new file.

Read e TFhettemay-berend 1 1 1 Y
Read direstory Fhedirestermay-barend-anby 1 1 1 %]
" i .
oo-=ecuies
Write e TFhetileseantertsrmaybe y y y y
.
Witte direstory FHes-ersabdirestories-may-be %] %] %] %]
marked-asExecute:
Exesute e Thetteby-baeeauted: 0 0 0 Y
Exesute direstory TFhedirestary-mey-baczarehed 1 1 1 %]
: e
cubdirestorys
Attribute file TFhetespemicsonsmay-be 1 1 1 Nete:
changed:
Adtrbute direstory TFhedirester sperrissens 1 1 1 Noted
may-be-ehanged:
Permission File/Directory Description DOS 0S2 | Win Win Mac UNIX
95 NT oS
Read file Thefile may beread 1 1 1 1 1 8]
Read directory Thedirectory may beread, only if the 1 1 1 1 1 U
directory isalso marked as Execute.
Write file Thefil€ s contents may be modified 9] 9] 9] 9] 9] U
Write directory Files or subdirectories may be renamed, U U U u u U
added, or deleted, only if the directory
is also marked as Execute.
Execute file Thefile by be executed. 0 0 0 0 0 8]
Execute directory The directory may be searched for a 1 1 1 1 1 U

specific file or subdirectory.

Attribute file Thefil€ s permissions may be changed. 1 1 1 1 1 Note 1
Attribute directory The directory’ s permissions may be 1 1 1 1 1 Note 1
changed.
Delete file Thefile may be deleted. Note2 | Note2 | Note | Note2 | Note2 | Note2
2
Ddete directory Thedirectory may be ddeted. Note2 | Note2 | Note | Note2 | Note2 | Note2

| LS

U - User Specified, 1 - Set, 0 - Clear

NOTE 1: Under UNIX only the owner of afile/directory may change its attributes.

NOTE 2: The Delete permission bit should be set based upon the status of the Write

permission bit. Under DOS, OS2 and Macintosh, if afile or directory is marked as
writable (Write permission set) then the file is considered deletable and the Delete

permission bit should be set. If afileisread only then the Delete permission bit should
not be set. This appliesto file create as well as changing attributes of afile.

3.3.3.4 Uint64 UniquelD

NOTE: For some operating systems (i.e. Macintosh) this value needsto be less
than the max value of aInt32 (2 - 1). Under the Macintosh operating system this

value is used to represent the Macintosh directory/file ID. Therefore an
implementation should attempt to keep this value less than the max value of a

Int32 (2= - 1). The values 1-15 shall be reserved for the use of Macintosh

implementations.

3.3.3.5 bhyte Extended Attributes

Certain extended attributes should be recorded in this field of the FileEntry for
performance reasons. Other extended attributes should be recorded in an ICB

pointed to by the field ExtendedAttributel CB. In the section on Extended
Attributes it will be specified which extended attributes should be recorded in this

field.

3.3.4 Extended Attributes

In order to handle some of the longer Extended Attributes (EAs) which may vary in
length, the following rules apply to the EA space.

1. All EAswith an attribute length greater than or equal to alogical block shall
be block aligned by starting and ending on alogical block boundary.

2. Smaller EAs shall be constrained to an attribute length which is a multiple of
4 bytes.

3. The Extended Attribute space shall appear as a single contiguous logical space
constructed as follows:

ISO/IEC 13346 EAS

Non block aligned | mplementation Use EAs
Block aligned Implementation Use EAs
Application Use EAs

3.3.4.1 Extended Attribute Header Descriptor
struct ExtendedAttributeHeaderDescriptor { /* 1SO 13346 4/14.10.1 */
struct tag DescriptorTag;
Uint32 ImplementationAttributesL ocation;
Uint32 ApplicationAttributesL ocation;
}

If the attributes associated with the location fields highlighted above do not exist,

then the value of the location field shall bepoint to the end-efbyte after the
extended attribute space.

3.3.4.2 Alternate Permissions
struct AlternatePermissionsExtendedAttribute { [* 1SO 13346 4/14.10.4 */

Uint32 AttributeType;
Uint8 AttributeSubtype;
byte Reserved[3];

Uint32 Attributel ength;
Uintl6 Ownerldentification;
Uint16 Groupl dentification;
Uint16 Permission;

}

This structure shall not be recorded.

3.3.4.3 FileTimes Extended Attribute
struct FileTimesExtendedAttribute { /* 1SO 13346 4/14.10.5*/

Uint32 AttributeType;
Uint8 AttributeSubtype;
byte Reserved[3];

Uint32 Attributel ength;
Uint32 Datal_ength;

Uint32 FileTimeExistence;
byte FileTimes;

}

3.3.4.3.1 Uint32 FileTimeExistance
3.3.4.3.1.1 Macintosh. OS
0S

Thisfield shall be set to indicate that only the file creation time has been
recorded.

3.3.4.3.1.2 Other OS
This structure need not be recorded.

3.3.4.3.2 byte FileTimes
3.3.4.3.21 Macintosh OS
&~ Shall beinterpreted as the creation time of the associated file.

& Shall be set to creation time of the associated file.

If the File Times Extended Attribute does not exist then a Macintosh
implementation shall use the ModificationTime field of the File Entry to
represent the file creation time.

3.3.4.3.2.2 Other OS
This structure need not be recorded.

3.3.4.4 Device Specification Extended Attribute
struct DeviceSpecificationExtendedAttribute { [* 1SO 13346 4/14.10.7 */

Uint32 AttributeType;

Uint8 AttributeSubtype;

byte Reserved[3];

Uint32 Attributel ength;

Uint32 ImplementationUseLength; /* (=IU_L) */
Uint32 M aj or Devicel dentification;

Uint32 MinorDevicel dentification;

byte ImplementationUse[IU_L];

The following paradigm shall be followed by an implementation that crestes a
Device Specification Extended Attribute associated with afile:

If and only if afile has a DeviceSpecificationExtendedAttribute associated
with it, the contents of the FileType field in the icbtag structure be set to 6
(indicating a block special device file), OR 7 (indicating a character
gpecial devicefile).

If the contents of the FileType field in the ichtag structure do not equal 6
or 7, the DeviceSpecificationExtendedAttribute associated with a file shall
be ignored.

In the event that the contents of the FileType field in the icbtag structure
equal 6 or 7, and the file does not have a
DeviceSpecificationExtendedAttribute associated with it, access to thefile
shall be denied.

For operating system environments that do not provide for the semantics
associated with a block special device file, requeststo
open/read/write/close afile that hasthe
DeviceSpecificationExtendedAttribute associated with it shall be denied.

All implementations shall record a developer 1D in the ImplementationUse
field that uniquely identifies the current implementation.

3.3.4.5 Implementation Use Extended Attribute
struct ImplementationUseExtendedAttribute { * 1SO 13346 4/14.10.8 */

Uint32 AttributeType;

Uint8 AttributeSubtype;

byte Reserved[3];

Uint32 Attributel ength;

Uint32 ImplementationUseL ength; /* (=IU_L) */
struct EntitylD Implementationl dentifier;

byte ImplementationUse[IU_L];

}

The AttributelLength field specifies the length of the entire extended attribute. For
variable length extended attributes defined using the Implementation Use
Extended Attribute the Attribute Length field should be large enough to leave
padding space between the end of the Implementation Use field and the end of the
I mplementation Use Extended Attribute.

The following sections describe how the |mplementation Use Extended Attribute
is used under various operating systems to store operating system specific
extended attributes.

The structures defined in the following sections contain a header checksum field.
This field represents a 16-bit checksum of the Implementation Use Extended
Attribute header. The fields AttributeType through Implementationl dentifier
inclusively represent the data covered by the checksum. The header checksum
field isused to aid in disaster recovery of the extended attribute space. C source
code for the header checksum may be found in the appendix.

NOTE: All compliant implementations shall preserve existing extended attributes
encountered on the media. Implementations shall create and support the extended
attributes for the operating system they currently support. For example, a
Macintosh implementation shall preserve any OS/2 extended attributes
encountered on the media. It shall also create and support all Macintosh extended
attributes specified in this document.

3.3.45.1 All Operating Systems
3.3.45.1.1 FreeEASpace
This extended attribute shall be used to indicate unused space within the
extended attribute space. This extended attributes shall be stored as an
I mplementation Use Extended Attribute whose Implementationl dentifier
shall be set to:
"*UDF FreeEASpace"

The ImplementationUse area for this extended attribute shall be structured

as follows:
FreeEASpace format
RBP | Length Name Contents
0 2 Header Checksum uintl6
2 IU_L-1 | Free EA Space bytes

This extended attribute alows an implementation to shrink/grow the total
size of other extended attributes without rewriting the complete extended
attribute space. The FreeEASpace extended attribute may be overwritten
and the space re-used by any implementation who sees a need to overwrite
it.

3.3.45.1.2 DVD Copyright Management Information

This extended attribute shall be used to store DVD Copyright
Management Information. This extended attribute shall be stored as an
Implementation Use Extended Attribute whose | mplementationl dentifier
shall be st to:

"*UDF DVD CGM S Info"

The ImplementationUse area for this extended attribute shall be structured

asfollows:
DVD CGMS Info format
RBP Length Name Contents
0 2 Header Checksum Uint16
2 1 CGMS Information byte
3 1 Data Structure Type Uint8
4 4 Protection System Information bytes

This extended attribute allows DVD Copyright Management Information
to be stored. The interpretation of this format shall be defined in the DVD
specification published by the DVD Consortium (see 6.9.3). Support for
this extended attribute is optional.

3.3.4.5.2 MS-DOS, Windows 95, Windows NT
&~ lgnored.

& Not supported. Extended attributes for existing files on the media shall be
preserved.

3.3453 052

0OS/2 supports an unlimited number of extended attributes which shall be
supported through the use of the following two Implementation Use Extended
Attributes.

3.345.31 OS2EA
This extended attribute contains all OS2 definable extended attributes
which shall be stored as an Implementation Use Extended Attribute whose
| mplementationl dentifier shall be set to:

"*UDF OS/2 EA"
The ImplementationUse area for this extended attribute shall be structured
as follows:
OS2EA format
RBP | Length Name Contents
0 2 Header Checksum uintl6
2 IU_L-2 | OS2 Extended Attributes FEA

The OS2ExtendedAttributes field contains atable of OS/2 Full EAs (FEA)
as shown below.

FEA format
RBP | Length Name Contents
0 1 Flags Uint8
1 1 Length of Name (=L_N) uUint8
2 2 Length of Value (=L_V) uintl6
4 L_N Name bytes
4+ N LV Value bytes

For a complete description of Full EAs (FEA) please reference the
following IBM document:

"Installable File System for OS2 Version 2.0"
OS2 File Systems Department

PSPC Boca Raton, Florida

February 17, 1992

3.3.45.32 OS2EALength
This attribute specifies the OS2 Extended Attribute information length.
Since this value needs to be reported back to OS/2 under certain directory
operations, for performance reasons it should be recorded in the
ExtendedAttributes field of the FileEntry. This extended attribute shall be
stored as an Implementation Use Extended Attribute whose
| mplementationl dentifier shall be set to:

"*UDF OS/2 EALength"
The ImplementationUse area for this extended attribute shall be structured
as follows:
OS2EAL ength format
RBP | Length Name Contents
0 2 Header Checksum uintl6
2 4 0OS/2 Extended Attribute Length Uint32

The value recorded in the OS2ExtendedAttributeLength field shall be
equal to the ImplementationUselLength field of the OS2EA extended
attribute - 2.

3.3.454 Macintosh OS

oS
The Macintosh OS requires the use of the following four extended
attributes.

3.3.45.4.1 MacVolumelnfo
This extended attribute contains Macintosh volume information which
shall be stored as an Implementation Use Extended Attribute whose
| mplementationl dentifier shall be set to:
"* UDF M ac Volumel nfo"

The ImplementationUse area for this extended attribute shall be structured

as follows:
MacVolumel nfo format
RBP | Length Name Contents
0 2 Header Checksum uint16
2 12 Last Modification Date timestamp
14 12 Last Backup Date timestamp
26 32 Volume Finder Information uint32

The MacVolumel nfo extended attribute shall be recorded as an extended
attribute of the root directory FileEntry.

3.3.45.4.2 MacFinderinfo
This extended attribute contains Macintosh Finder information for the
associated file or directory. Since this information is accessed frequently,
for performance reasons it should be recorded in the ExtendedAttributes
field of the FileEntry.

The MacFinderInfo extended attribute shall be stored as an
Implementation Use Extended Attribute whose | mplementationl dentifier
shall be set to:

"*UDF M ac FinderInfo"

The ImplementationUse area for this extended attribute shall be structured

as follows:
MacFinderInfo format for a directory
RBP | Length Name Contents
0 2 Header Checksum uintl6
2 2 Reserved for padding (=0) uintl6
4 4 Parent Directory ID Uint32
8 16 Directory Information UDFDInfo
24 16 Directory Extended Information UDFDXInfo

MacFinderInfo format for afile

RBP | Length Name Contents

0 2 Header Checksum uintl6

2 2 Reserved for padding (=0) uintl6

4 4 Parent Directory 1D Uint32

8 16 File Information UDFFInfo

24 16 File Extended Information UDFFXInfo
40 4 Resource Fork Data Length Uint32

44 4 Resource Fork Allocated Length Uint32

The MacFinderInfo extended attribute shall be recorded as an extended
attribute of every file and directory within the Logical Volume.

The following structures used within the MacFinderInfo structure are
listed below for clarity. For complete information on these structures refer
to the Macintosh books called "Inside Macintosh". The volume and page
number listed with each structure correspond to a specific "Inside
Macintosh" volume and page.

UDFPoint format (Volume |, page 139)

RBP | Length Name Contents
0 2 v Int16
2 2 h Int16
UDF Rect format (Volume I, page 141)
RBP | Length Name Contents
0 2 top Int16
2 2 | eft Int16
4 2 bottom Int16
6 2 right Int16
UDFDInfo format (Volume 1V, page 105)
RBP | Length Name Contents
0 8 frRect UDFRect
8 2 frFlags Int16
10 4 frLocation UDFPoint
14 2 frView Int16
UDFDXInfo format (Volume 1V, page 106)
RBP | Length Name Contents
0 4 frScroll UDFPoint
4 4 frOpenChain Int32
8 1 frSeript Uint8
9 1 frXflags uUint8
10 2 frComment Int16
12 4 frPutAway Int32

UDFFInfo format (Volumell, page 84)

61

RBP | Length Name Contents
0 4 fdType Uint32
4 4 fdCreator Uint32
8 2 fdFlags uintl6
10 4 fdL ocation UDFPoint
14 2 fdFdr Int16
UDFF XInfo format (Volume 1V, page 105)
RBP | Length Name Contents
0 2 fdlconID Int16
2 6 fdUnused bytes
8 1 fdScript Int8
9 1 fdXFlags Int8
10 2 fdComment Int16
12 4 fdPutAway Int32

NOTE: The above mentioned structures have there original Macintosh
names preceded by "UDF" to indicate that they are actually different from
the original Macintosh structures. On the media the UDF structures are
stored little endian as opposed to the original Macintosh structures which
are in big endian format.

3.3.45.43 MacUniquelDTable

This extended attribute contains a table used to look up the FileEntry for a
specified Uniquel D. Thistable shall be stored as an Implementation Use
Extended Attribute whose | mplementationl dentifier shall be set to:

"*UDF Mac UniquelDTable"

The ImplementationUse area for this extended attribute shall be structured
as follows:

MacUniquel DTable format

RBP | Length Name Contents
0 2 Header Checksum uint16
2 2 Reserved for padding (=0) uintl6
4 4 Number of Unique ID Maps (=N_DID) Uint32
8 N_DID x 8 | Unique ID Maps Uniquel DMap

Uniquel DMap format

RBP | Length Name Contents

0 8 File Entry Location small_ad

62

small ad format

RBP | Length Name Contents
0 2 Extent Length Uint16
2 6 Extent Location Ib_addr (4/7.1)

ThisUniquel DTable is used to look up the corresponding FileEntry for a
specified Macintosh directory/file ID (Uniquel D). For example, given
some Macintosh directory/file ID i the corresponding FileEntry location
may be found in the (i-2) UniquelDMap in the UniquelDTable. The
correspondence of directory/file ID to UniquelD is (Directory/file ID -2)
because Macintosh directory/file IDs start at 2 while Uniquel Ds start at 0.
In the Macintosh the root directory always has adirectory ID of 2, which
corresponds to the requirement of having the Uniquel D of the root
FileEntry have the value of 0.

If the value of the Extent Length field of the File Entry Location is O then
the corresponding Uniquel D is free.

The MacUniquel DTable extended attribute shall be recorded as an
extended attribute of the root directory.

The MacUniquel DTableis created and updated only by implementations
that support the Macintosh. When the Logical Volume is modified by
implementations that do not support the MacUniquel DTable can become
out of date in the following ways:

» Filescan exist on the media which are not referenced in the
MacUniquelDTable. This can result from a non-Macintosh
implementation creating a new file on the media.

* Filesinthe Uniquel D table may no longer exist onthe media. This
can result from a non-Macintosh implementation deleting a file on
the media

The Macintosh uses the Uniquel D to directly address a file on the media
without reference to its file name. Thiswill only happen if the file was
originally created by an implementation that supportsthe Macintosh.
Therefore any new files added to the logical volume by non-Macintosh
implementations will always be referenced by file name first, never by
UniquelD. At thefirst access of the file by file name, the Macintosh
implementation can detect that this Uniquel D is not in the

MacUniquel DTable and update the table appropriately.

The second problem is a little more difficult to address. The problem
occurs when a Macintosh implementation gets a reference to afile on the
media given aUniquelD. The Macintosh implementation needs to make
sure that the file the Uniquel D references still exists. The following things
can be done:

* Veify that the File Entry (FE) pointed to by the Uniquel D
contains the same Uniquel D.

* AND Verify that the block that contains the FE is not on the free
list. Thiscould occur when the file is deleted by a non-Macintosh
implementation, and the FE has not been overwritten.

The only case that these two tests do not catch is when a file has been
deleted by a non-Macintosh implementation, and the logical block
associated with the FE has been reassigned to anew file, and the new file
has used the block in an extent of Allocated but not recorded.

3.3.45.4.4 MacResourceFork
This extended attribute contains the Macintosh resource fork data for the
associated file. Theresource fork data shall be stored as an
Implementation Use Extended Attribute whose | mplementationl dentifier
shall be set to:
"* UDF M ac ResourceFork"

The ImplementationUse area for this extended attribute shall be structured

asfollows:
MacResourceFork format
RBP | Length Name Contents ||
0 2 Header Checksum Uint16 |
2 IU_L-2 | Resource Fork Data bytes |

The MacResourceFork extended attribute shall be recorded as an extended
attribute of all files, with > O bytes in the resource fork, within the Logical
Volume.

The two fields of the MacFinderInfo extended attribute the reference the
MacResourceFork extended attributes are defined as follows:

Resource Fork Data Length - Shall be set to the length of the
actual data considered to be part of the resource fork.

Resource Fork Allocated Length - Shall be set to the total amount
of space in bytes allocated to the resource fork.

3.3455 UNIX
&~ lgnored.

& Not supported. Extended attributes for existing files on the media
shall be preserved.

3.3.4.6 Application Use Extended Attribute
struct ApplicationUseExtendedAttribute{ /* 1SO 13346 4/14.10.9 */

Uint32 AttributeType; /* = 65536 */

Uint8 AttributeSubtype;

byte Reserved[3];

Uint32 Attributel ength;

Uint32 ApplicationUseLength; /* (=AU_L) */
struct EntitylD Applicationl dentifier;

byte ApplicationUse[AU_L]J;

}

The AttributeLength field specifies the length of the entire extended attribute. For
variable length extended attributes defined using the Application Use Extended
Attribute the Attribute Length field should be large enough to leave padding space
between the end of the ApplicationUse field and the end of the Application Use
Extended Attribute.

The structures defined in the following section contains a header checksum field.
Thisfield represents a 16-bit checksum of the Application Use Extended Attribute
header. The fields AttributeType through Applicationldentifier inclusively
represent the data covered by the checksum. The header checksum field is used to
aid in disaster recovery of the extended attribute space. C source code for the
header checksum may be found in the appendix.

NOTE: All compliant implementations shall preserve existing extended attributes
encountered on the media. Implementations shall create and support the extended
attributes for the operating system they currently support. For example, a
Macintosh implementation shall preserve any OS/2 extended attributes
encountered on the media. It shall also create and support all Macintosh extended
attributes specified in this document.

3.3.4.6.1 All Operating Systems
This extended attribute shall be used to indicate unused space within the
extended attribute space reserved for Application Use Extended Attributes. This
extended attribute shall be stored as an Application Use Extended Attribute whose
Applicationldentifier shall be set to:
"*UDF FreeAppEASpace"

The ApplicationUse area for this extended attribute shall be structured as follows:

FreeAppEASpace format
RBP | Length Name Contents
0 2 Header Checksum Uint16
2 IU L-1 | Free EA Space bytes

This extended attribute allows an implementation to shrink/grow the total size of
other extended attributes without rewriting the complete extended attribute space.
The FreeAppEASpace extended attribute may be overwritten and the space re-
used by any implementation who sees a need to overwrite it.

4. User Interface Requirements
4.1 Part 3- Volume Structure

Part 3 of 1SO/IEC 13346 contains various | dentifiers which, depending upon the
implementation, may have to be presented to the user.

* Volumeldentifier

* VolumeSetldentifier

* LogicalVolumelD

These identifiers, which are stored in CS0, may have to go through some form of
translation to be displayable to the user. Therefore when an implementation must
perform an OS specific translation on the above listed identifiers the
implementation shall use the algorithms described in section 4.1.2.1.

C source code for the translation algorithms may be found in the appendices of
this document.

4.2 Part 4 - File System

42.1 ICB Tag
struct icbtag { /* 1SO 13346 4/14.6 */

Uint32 PriorRecordedNumberofDirectEntries;
Uint16 StrategyType;
byte StrategyParameter[2];
Uint16 Numberof Entries;
byte Reserved; /* ==#00*/
Uint8 FileType;
Lb addr Parentl CBLocation;
Uint16 Flags;

4.2.1.1 FileType
Any open/close/read/write requests for file(s) that have any of the following
values in this field shall result in an Access Denied error condition under non-
UNIX operating system environments :

FileType values - 0 (Unknown), 6 (block device), 7 (character device), 9
(FIFO), and 10 (C_ISSOCK).

Any open/close/read/write requests to a file of type 12 (SymbolicLink) shall
access the file/directory to which the symbolic link is pointing.

4.2.2 Fileldentifier Descriptor

struct FileldentifierDescriptor { [* 1S0 13346 4/14.4 */
struct tag DescriptorTag;

Uint16
Uint8
Uint8

FileVersionNumber;
FileCharacteristics;
LengthofFileldentifier;

struct long_ad ICB,;

Uint16

byte

char

byte
}

Lengthofl mplementationUse;
I mplementationUse] 77);
Fileldentifier[?77];
Padding[77;

4.2.2.1 char Fileldentifier
Since most operating systems have their own specifications as to characteristics of
alegal Fileldentifier, thisbecomes a problem with interchange. Therefore since
all implementations must perform some form of Fileldentifier translation it would
be to the users advantage if all implementations used the same algorithm.

The problems with Fileldentifier translations fall within one or more of the
following categories:

Name Length -Mogt operating systems have some fixed limit for
the length of afile identifier.

Invalid Characters - Most operating systems have certain
characters considered as being illegal within a file identifier name.

Displayable Characters - Since UDF supports the Unicode
character set sandard characters within afile identifier may be
encountered which are not displayable on the receiving system.

Case Insensitive - Some operating systems are case insensitive in
regards to file identifiers. For example OS/2 preserves the original
case of the file identifier when the file is created, but uses a case
insensitive operations when accessing the file identifier. In OS/2
“Abc” and “ABC” would be the same file name.

Reserved Names - Some operating systems have certain names that
cannot be used for afile identifier name.

The following sections outline the Fileldentifier translation algorithm for each
specific operating system covered by this document. This algorithm shall be used
by all OSTA UDF compliant implementations. The algorithm only applies when
reading an illegal Fileldentifier. The original Fileldentifier name on the media
should not be modified. Thisalgorithm shall be applied by any implementation
which performs some form of Fileldentifier translation to meet operating system
file identifier restrictions.

All OSTA UDF compliant implementations shall support the UDF translation
algorithms, but may support additional algorithms. 1f multiple algorithms are
supported the user of the implementation shall be provided with a method to
select the UDF translation algorithms. It is recommended that the default
displayable algorithm be the UDF defined algorithm.

The primary goal of these algorithms isto produce a unique file name that meets
the specific operating system restrictions without having to scan the entire
directory in which the file resides.

C source code for the following algorithms may be found in the appendices of this
document.

NOTE: Inthe definition of the following algorithms anytime a d-character is
specified in quotes, the Unicode hexadecimal value will also be specified. In
addition the following algorithms reference “CS0 Hex representation”, which
corresponds to using the Unicode values #0030 - #0039, and #0041 - #0046 to
represent avalue in hex.

The following algorithms could still result in name-collisions being reported to
the user of an implementation. However, the rationale includes the need for
efficient access to the contents of a directory and consistent name translations
across logical volume mounts and file system driver implementations, while
allowing the user to obtain access to any file within the directory (through
possibly renaming afile).

Definitions:
A Fileldentifier shall be considered as being composed of two parts, afile name
and file extension.

The character '.' (#002E) shall be considered as the separator for the Fileldentifier
of afile; characters appearing subsequent to the last '.' (#002E) shall be
considered as constituting the file extension if and only if it isless than or equal to
5 characters in length, otherwise the file extension shall not exist. Characters
appearing prior to the file extension, excluding the last . (#002E), shall be
considered as constituting the file name.

NOTE: Even though OS2, Macintosh, and UNIX do not have an official
concept of afilename extension it is common file naming conventions to
end afilewith “.” followed by a1 to 5 character extension. Therefore the
following algorithms attempt to preserve the file extenson up to a
maximum of 5 characters.

4.2.21.1 MSDOS

OSTA-Uniy

Due to the restrictions imposed by the MS DOS operating system environments
on the Fileldentifier associated with a file the following methodology shall be
employed to handle Fileldentifier(s) under the above-mentioned operating System
environments :

Restrictions: The file name component of the Fileldentifier shall not exceed 8

characters.
characters.

1.

2.

ersal-Disk-Fort

SHS

Rat

The file extension component of the Fileldentifier shall not exceed 3

Fileldentifier Lookup: Upon request for a"lookUp" of a Fileldentifier,
a case-insensitive comparison shall be performed.

Validate Fileldentifer: If the Fileldentifier isavalid MS-DOSfile
identifier then do not apply the following steps.

Remove Spaces. All embedded spaces within the identifier shall be
removed.

Invalid Characters: A Fileldentifier that contains characters considered
invalid within a file name or file extension (as defined above), or not
displayable in the current environment, shall have them translated into
"_" (#OOSF). (the file identifier on the mediais NOT modified).
Multiple sequential invalid or non-displayable characters shall be
translated into asingle “_” (#005F) character. Reference the appendix
oninvalid characters for acomplete list.

Leading Periods:. In the event that there do not exist any characters
prior to thefirst "." (#002E) character, leading "." (#002E) characters
shall be disregarded up to the first non “.” (#002E) character, in the
application of this heuristic.

Multiple Periods: In the event that the Fileldentifier contains multiple
"." (#OO02E) characters, all characters appearing subsequent to the last
"' (#002E) shall be considered as constituting the file extension if and
only if it islessthan or equal to 5 charactersin length, otherwise the
file extension shall not exist. Characters appearing prior to thefile
extension, excluding the last . (#002E), shall be considered as
congtituting the file name. All embedded "." (#002E) characters within
the file name shall be removed.

Long Extension: In the event that the number of characters constituting
the file extension at this step in the process is greater than 3, thefile
extension shall be regarded as having been composed of the first 3

~
(@)

characters amongst the characters constituting the file extension at this
step in the process.

8. Long Filename: In the event that the number of characters constituting
the file name at this step in the process is greater than 8, the file name
shall be truncated to 4 characters.

9. Fileldentifier CRC: Since through the above process character
information from the original Fileldentifier is lost the chance of
creating a duplicate Fileldentifier in the same directory increases. To
greatly reduce the chance of having a duplicate Fileldentifier the file
name shall be modified to contain a CRC of the original Fileldentifier.
The file name shall be composed of the first 4 characters constituting

the file name at this step in the process-fetlowed-by-the separator“#-
(#0023}, followed by a 24 digit CSO Hex representation of the least

sighificant-12 bitsof the 16--bit CRC of the original CSO

Fileldentifier. NOTE: All other algorithms except DOS precede the

CRC by a separator '# (#0023). Dueto the limited number of

characters in aDOS file name a separator for the CRC is not used.
10. The new file identifier shall be translated to all upper case.

42212 OS2

Due to the restrictions imposed by the OS/2 operating system environment, on the
Fileldentifier associated with a file the following methodology shall be employed
to handle Filel dentifier(s) under the above-mentioned operating system
environment-:

1. Fileldentifier Lookup: Upon request for a"lookUp" of a Fileldentifier,
a case-insensitive comparison shall be performed.

2. Validate Fileldentifer: If the Fileldentifier isavalid OS/2 file
identifier then do not apply the following steps.

3. Invalid Characters. A Fileldentifier that contains characters considered
invalid within an OS/2 file name, or not displayable in the current
environment shall have them translated into " " (#005F). Multiple
sequential invalid or non-displayable characters shall be translated into
a single “_” (#005F) character. Reference the appendix on invalid
characters for acomplete list.

4. Trailing Periods and Spaces: All trailing “.” (#002E) and “ “ (#0020)
shall be removed.

5. Fileldentifier CRC: Since through the above process character
information from the original Fileldentifier islost the chance of
creating a duplicate Fileldentifier in the same directory increases. To
greatly reduce the chance of having a duplicate Fileldentifier thefile
name shall be modified to contain a CRC of the original Fileldentifier.

OSTA-Universal Disk Fermat

SHS

~|
[EY

If there is afile extension then the new Fileldentifier shall be
composed of up to the first (254 - (length of (new file extension) + 1
(for the ")) - 45 (for the #CRC)) characters constituting the file name
at this step in the process, followed by the separator '# (#0023);
followed by a 24 digit CSO Hex representation of the teast-signiticant
12 bitsef the- 16--bit CRC of the original CS0 Fileldentifier, followed
by '." (#002E) and the file extension at this step in the process.

Otherwise if there is no file extension the new Fileldentifier shall be
composed of up to the first (254 - 45 (for the #CRC)) characters
constituting the file name at this step in the process. Followed by the
separator '# (#0023); followed by a 34 digit CSO Hex representation of
the least significant 12 bitsof the 16-bit CRC of the original CS0

Fileldentifier.

4.2.2.1.3 Macintosh

OSTA-Uni

Due to the restrictions imposed by the Macintosh operating system environment,
on the Fileldentifier associated with a file the following methodology shall be
employed to handle Fileldentifier(s) under the above-mentioned operating System
environment :

SHS

1.

2.

iversal Disk-Format

Fileldentifier Lookup: Upon request for a"lookUp" of a Fileldentifier,
a case-insensitive comparison shall be performed.

Validate Fileldentifer: If the Fileldentifier isavalid Macintosh file
identifier then do not apply the following steps.

Invalid Characters. A Fileldentifier that contains characters considered
invalid within a Macintosh file name, or not displayable in the current
environment, shall have them translated into " " (#005F). Multiple
sequential invalid or non-displayable characters shall be translated into
a single “ " (#005F) character. Reference the appendix on invalid
characters for a complete list

Long Fileldentifier - In the event that the number of characters
constituting the Fileldentifier at this step in the process is greater than
31 (maximum name length for the Macintosh operating system), the
new Fileldentifier will consist of the first 2726 characters of the
Fileldentifier at this step in the process.

Fileldentifier CRC Since through the above process character
information from the original Fileldentifier islost the chance of
creating a duplicate Fileldentifier in the same directory increases. To
greatly reduce the chance of having a duplicate Fileldentifier thefile
name shall be modified to contain a CRC of the original Fileldentifier.

If there is afile extension then the new Fileldentifier shall be
composed of up to thefirst (31 - (length of (new file extension) + 1

~
N

(for the ")) - 45 (for the #CRC)) characters constituting the file name
at this step in the process, followed by the separator '# (#0023);
followed by a 24 digit CSO Hex representation of the least-signiticant
12 bitsef the- 16--bit CRC of the original CS0 Fileldentifier, followed
by '." (#002E) and the file extension at this step in the process.

Otherwise if there is no file extension the new Fileldentifier shall be
composed of up to thefirst (31 - 4-5(for the #CRC)) characters
congtituting the file name at this step in the process. Followed by the
separator '# (#0023); followed by a 34 digit CS0 Hex representation of

the least-significant 12 bitsof the 16-bit CRC of the original CS0
Fileldentifier.

4.2.2.1.4 Windows 95 & Windows NT

Due to the restrictions imposed by the Windows 95 and Windows NT operating
system environments, on the Fileldentifier associated with afile the following
methodology shall be employed to handle Fileldentifier(s) under the above-
mentioned operating System environment:

OSTA Lniv
oY

1.

2.

Fileldentifier Lookup: Upon request for a"lookUp" of a Fileldentifier,
a case-insensitive comparison shall be performed.

Validate Fileldentifer: If the Fileldentifier isavalid file identifier for
Windows 95 or Windows NT then do not apply the following steps.
Invalid Characters. A Fileldentifier that contains characters considered
invalid within a file name of the supported operating system, or not
displayable in the current environment shall have them translated into
" " (#005F). Multiple sequential invalid or non-displayable characters
shall be trandlated into a single “_” (#005F) character. Reference the
appendix on invalid characters for a complete lit.

Trailing Periods and Spaces. All trailing “.” (#002E) and “ “ (#0020)
shall be removed.

Fileldentifier CRC: Since through the above process character
information from the original Fileldentifier is lost the chance of
creating aduplicate Fileldentifier in the same directory increases. To
greatly reduce the chance of having aduplicate Fileldentifier the file
name shall be modified to contain a CRC of the original Fileldentifier.

If there is afile extension then the new Fileldentifier shall be
composed of up to thefirst (255 - (Iength of (new file extension) + 1
(for the ") - 5 (for the #CRC)) characters constituting the file name at
this step in the process, followed by the separator '# (#0023); followed
by a4 digit CSO Hex representation of the 16-bit CRC of the original
CSO Fileldentifier, followed by ".' (#002E) and the file extension at this
step in the process.

Ravigdon1 02
~EviH LRae

~!

w
¢
b

4.2.2.1.5 UNIX

Otherwise if there is no file extension the new Fileldentifier shall be
composed of up to the first (255 - 5 (for the #CRC)) characters
constituting the file name at this step in the process. Followed by the
separator '# (#0023); followed by a4 digit CS0 Hex representation of
the 16-bit CRC of the original CS0 Fileldentifier.

Due to the restrictions imposed by UNIX operating system environments, on the
Fileldentifier associated with a file the following methodology shall be employed
to handle Fileldentifier(s) under the above-mentioned operating system
environment:

1.

2.

Fileldentifier Lookup: Upon request for a"lookUp" of a Fileldentifier,
a case-sensitive comparison shall be performed.

Validate Fileldentifer: If the Fileldentifier isavalid UNIX file
identifier for the current system environment then do not apply the
following steps.

Invalid Characters: A Fileldentifier that contains characters considered
invalid within a UNIX file name for the current system environment,
or not displayable in the current environment shall have them
translated into "_" (#005E). Multiple sequential invalid or non-
displayable characters shall be translated into asingle“_" (#005E)
character. Reference the appendix on invalid characters for acomplete
list

Long Fileldentifier - In the event that the number of characters
constituting the Fileldentifier at this step in the process is greater than
MAXNameLength (maximum name length for the specific UNIX
operating system), the new Fileldentifier will consist of the first
MAXNameLength-45 characters of the Fileldentifier at this step in the
process.

Fileldentifier CRC Since through the above process character
information from the original Fileldentifier islost the chance of
creating a duplicate Fileldentifier in the same directory increases. To
greatly reduce the chance of having a duplicate Fileldentifier thefile
name shall be modified to contain a CRC of the original Fileldentifier.

If there is afile extension then the new Fileldentifier shall be
composed of up to the first (MAXNameLength - (Ilength of (new file
extension) + 1 (for the'.")) - 45 (for the #CRC)) characters constituting
the file name at this step in the process, followed by the separator '#
(#0023); followed by a 24 digit CSO Hex representation of the least

sigrHieant 12 bitsof the 16-bit CRC of the original CS0 Fileldentifier,
followed by " (#002E) and the file extension at this step in the process.

OSTA _Universal Disk Format A NReviean-02
T i 3 L= E= A T Hct 14 O

Otherwise if there is no file extension the new Fileldentifier shall be
composed of up to the first (MAXNameLength - 45 (for the #CRC))
characters constituting the file name at this step in the process.
Followed by the separator '# (#0023); followed by a 24 digit CSO Hex

representation of the least-significant 12 bitsof the 16-bit CRC of the
original CSO Fileldentifier.

5. Informative
5.1 Descriptor Lengths

The following table summarizes the UDF limitations on the lengths of the Descriptors

described in SO 13346.

Descriptor Length
Anchor Volume Descriptor Pointer 512
Volume Descriptor Pointer 512
I mplementation Use Volume Descriptor 512
Partition Descriptor 512
Logical Volume Descriptor Nno max
Unallocated Space Descriptor no max
Terminating Descriptor 512
Logical Volume Integrity Descriptor no max
File Set Descriptor 512

File Identifier Descriptor

Maximum of a
Logical Block Size

Allocation Extent Descriptor 24
Indirect Entry 52
Terminal Entry 36

File Entry

Maximum of a
Logical Block Size

Unallocated Space Entry

Maximum of a
Logical Block Size

Space Bit Map Descriptor

Nno mMax

Partition Integrity Entry

N/A

5.2 Using Implementation Use Areas

5.2.1 Entity ldentifiers

Refer to the section on Entity Identifiers defined earlier in this document.

5.2.2 Orphan Space

Orphan space may exist within alogical volume, but it is not recommended since
it may be reallocated by some type of logical volume repair facility. Orphan
space is defined as space that is not directly or indirectly referenced by any of the

non-implementation use descriptors defined in SO 13346.

OSTA Universal Digdk Format 70
T AerSaHS=0HSE

NOTE: Any allocated extent for which the only reference resides within an
implementation use field is considered orphan space.

5.3 Boot Descriptor
Please refer to the "OSTA Native | mplementation Specification” document for
information on the Boot Descriptor.

5.4 Technical Contacts
Technical questions regarding this document may be emailed to the OSTA
Technical Committee at info@osta@aet.comorg. Also technical questions may
be faxed to the attention of the OSTA Technical Committee at 1-805-962-1542.

OSTA may also be contacted through the following address:

Technical Committee Chairman
OSTA

311 East Carrillo Street

Santa Barbara, CA 93101
(805) 963-3853

Also monitor the OSTA web site at www.osta.or g for additional information.

OSTA-Universal Disk Fermat —2= Revison1.02
T T o T o I{ o

6. Appendices

6.1 UDF Entity Identifier Definitions

it

Entity |dentifier

Description

"*OSTA UDF Compliant"

Indicates the contents of the specified logical volume or file set
is complaint with domain defined by this document.

“*UDF LV Info” Contains additional Logical Volumeidentification information.

"*UDF FreeEA Space" Contains free unused space within the implementation extended
attribute space.

“* UDF FreeAppEA Space” Contains free unused space within the application extended

attribute space.

“*UDF DVD CGMS Info”

Contains DVD Copyright Management Information

"*UDF OS/2 EA" Contains OS2 extended attribute data.
"*UDF OS2 EALength" Contains OS2 extended attribute length.
"*UDF Mac Volumelnfo" Contains Macintosh volume information.

"*UDF Mac FinderInfo"

Contains Macintosh finder information.

"*UDF Mac UniquelDTable"

Contains Macintosh Uniquel D Table which isused to map a
Unique ID to aFile Entry.

"* UDF Mac ResourceFork"

Contains Macintosh resource fork information.

“*UDF Virtual Partition”

Describes UDF Virtual Partition

“*UDF Sparable Partition”

Describes UDF Sparable Partition

“*UDF Virtual Alloc Thl”

Containsinformation for handling rewriting to sequentially
written media.

“*UDF Sparing Table’

Containsinformation for handling defective areas on the media

OSTA Universal Digdk Format
T R =OHaE

SHS

~l
(0 0]

6.2 UDF Entity Identifier Values

Entity |dentifier

Byte Value

"*OSTA UDF Compliant"

H#2A, #AF, #53, #54, #41, #20, #55, #44, #46, #20, #43, #6F,
#6D, #70, #6C, #69, #61, #6E, #74

“*UDF LV Info” #2A, #55, #44, #46, #20, #AC, #56, #20, #49, #OE, #66, #6F

"*UDF FreeEASpace" H#2A, #55, #44, #46, #20, #46, #72, #65, #65, #45, #41, #53, #710,
#61, #63, #65

"*UDF FreeAppEASpace" #2A, #55, #44, #46, #20,

HA6, #72, #65, #65, #41, #70, #70,
#45, #41, #53, #10, #61, #63, #65

“*UDF DVD CGMS Info”

H#2A, #55, #44, #46, #20, #44, #56, #44, #20,
H#A3, #47, #4D, #53, #20, #49, #HOE, #66, #6F

"*UDF OS2 EA" H#2A, #55, #44, #46, #41, #20, #45, #41
"*UDF OS2 EALength" #2A, #55, #44, #46, #20, #45, #41, #4C, #65, #OE, #67, #74, #68
"*UDF Mac Volumelnfo" H#2A, #55, #44, #46, #20, #4D, #61, #63, #20, #56, #6F, #6C,

#75, #6D, #65, #49, #OE, #0606, #6F

"*UDF Mac FinderInfo"

H#2A, #55, #44, #46, #20, #4D, #61, #63, #20, #49, #69, HOE,
H#64, #65, #12, #49, HOE, #66, #6F

"*UDF Mac UniquelDTable"

#2A, #55, #44, #46, #20, #AD, #61, #63, #20, #55, #OE, #69,
H#T1, #75, #65, #49, #44, #54, #61, #62, #6C, #65

"* UDF Mac ResourceFork"

H#2A, #55, #44, #46, #20, #AD, #61, #63, #20, #52, #65, #73,
HOF, #75, #72, #63, #65, #46, #OF, #72, #6B

“*UDF Virtual Partition”

#2A, #55, #44, #46, #20, #56, #69, #72, #74, #75, #61, #6C,
#20, #50, #61, #72, #74, #69, #74, #69, #6F, #OE

“*UDF Sparable Partition”

#2A, #55, #44, #46, #20, #53, #70, #61, #72, #61, #62, #6C,

#65, #20, #50, #61, #72, #74, #69, #74, #69, #6F, #6E

“*UDF Virtual Alloc Thl”

#2A, #55, #44, #46, #20, #56, #69, #72, #74, #75, #61, #6C,
#20, #41, #6C, #6C, #6F, #63, #20, #54, #62, #6C

“*UDF Sparing Table’

#2A, #55, #44, #46, #20, #53, #70, #61, #72, #69, #OE, #67,
#20, #54, #61, #62, #6C, #65

OSTA Universal Digdk Format
T R =OHaE

SHS

~
(e}

6.3 Operating System Identifiers
The following tables define the current allowable values for the OS Class and OS
Identifier fields in the Identifier Suffix of Entity Identifiers.

The OS Class field will identify under which class of operating system the
specified descriptor was recorded. The valid values for thisfield are as follows:
Value Operating System Class
0 Undefined
1 DOS
2 0Ss/2
3 Macintosh OS
4 UNIX
5-255 | ReservedWindows 9x
6 Windows NT
7-255 | Reserved

The OS Identifier field will identify under which operating system the specified

descriptor was recorded.

The valid values for this field are as follows:

oS
Class

0N
| dentifier

Operating System Identified

Any Vaue

Undefined

DOS/Windows 3.x

0S/2

Macintosh OS System 7

UNIX - Generic

UNIX - IBM AIX

UNIX - SUN OS/ Solaris

UNIX - HP/UX

UNIX - Silicon Graphics Irix

UNIX - Linux

UNIX - MKLinux

UNIX - FreeBSD

Windows 95

NG EN TN ENEN FN FN FN IR N NG
olo|w|o|u|slw(nv|k|o|lolo|o

Windows NT

For the most update list of values for OS Class and OS |dentifier please contact OSTA
and request a copy of the UDF Entity Identifier Directory. Thisdirectory will also
contain |mplementation I dentifiers of 1ISVswho have provided the necessary information

to OSTA.

NOTE: If you wishto add to th
Chairman at the OSTA address

OSTA Universal Digdk Format
T AerSaHS=0HSE

is list please contact the OSTA Technical Committee
listed in section 5.3 Technical Contacts. -Currently

80

Windews 95.not all features of Windows NT and NetWare are rotfully supported by
this specification, but OSTA has started the work on these operating systems.

0
=

6.4 OSTA Compressed Unicode Algorithm

/***

* OSTA conpliant Uni code conpression, unconpression routines.

* Copyright 1995 Mcro Design International, Inc

* Witten by Jason M R nn.

* Mcro Design International gives permssion for the free use of the
* foll owi ng source code.
*
/
i

#i ncl ude <stddef. h>

/***

* The following two typedef's are to renove conpil er dependanci es.
* byte needs to be unsigned 8-bit, and unicode_t needs to be
* unsigned 16-bit.
*/
t ypedef unsigned short unicode_t;
t ypedef unsigned char byte;

/***

* Takes an OSTA CSO conpressed uni code nane, and converts
* it to Unicode.

* The Unicode output will be in the byte order

* that the |ocal conpiler uses for 16-bit val ues.

* NOTE: This routine only perforns error checking on the conpl D

* It is up to the user to ensure that the unicode buffer is |arge

* enough, and that the conpressed unicode nanme is correct.

*

* RETURN VALUE

*

* The nunber of uni code characters which were unconpressed

* A-1is returned if the conpression IDis invalid.

*/

i nt UnconpressUni code(

i nt nunber O Byt es, /* (Input) nunmber of bytes read fromnedia. */
byt e *UDFConpressed, /* (lnput) bytes read from nedi a. */
uni code_t *uni code) /* (Qutput) unconpressed uni code characters. */

unsi gned int conpl D
int returnVal ue, unicodel ndex, byt el ndex;

/* Use UDFConpressed to store current byte being read. */
conpl D = UDFConpressed[0] ;

/* First check for valid conplD. */
if (conplD!= 8 && conpl D != 16)

returnVal ue = -1;
el se
{ .
uni codel ndex = 0;
byt el ndex = 1;
/* Loop through all the bytes. */
whi | e (bytel ndex < nunber O Byt es)
if (conplD == 16)
/*Move the first byte to the high bits of the unicode char. */
uni code[uni codel ndex] = UDFConpressed[byt el ndex++] << 8;
el se
- {

uni code[uni codel ndex] = O0;

if (bytelndex < nunber O Bytes)
{

OSTA Universal Digdk Format
T R =OHaE

SHS

[e0)
N

/*Then the next byte to the low bits. */
uni code[uni codel ndex] | = UDFConpressed[byt el ndex++] ;

uni codel ndex++;
ret urnVal ue = uni codel ndex;

return(returnVal ue);

/***

* DESCRI PTI ON:

Takes a string of unicode wi de characters and returns an OSTA CSO

conpressed uni code string. The uni code MJUST be in the byte order of
the conmpiler in order to obtain correct results. Returns an error
if the conpression IDis invalid.

NOTE: This routine assunmes the inplenentation already knows, by
the local environment, how nmany bits are appropriate and
therefore does no checking to test if the input characters fit
into that nunber of bits or not.

RETURN VALUE
The total nunber of bytes in the conpressed OSTA CSO string,

i ncluding the conpression ID.
A-1is returned if the conpression IDis invalid.

b TR IR B R I B SN

/
i nt ConpressUni code(

i nt nunber O Chars, /* (Input) nunber of unicode characters. */
int conpl D, /* (Input) conpression ID to be used. */
uni code_t *uni code, /* (Input) unicode characters to conpress. */

byt e *UDFConpressed) /* (Qutput) conpressed string, as bytes. */
{
int bytelndex, unicodel ndex;

if (conplD!= 8 & conplD = 16)

bytel ndex = -1; [/* Unsupported conpression ID! */
el se
{
/* Place conpression code in first byte. */
UDFConpr essed[0] = conpl D
byt el ndex = 1;
uni codel ndex = 0;
whi | e (uni codel ndex < nunber Of Char s)
if (conplD == 16)
/* First, place the high bits of the char
* into the byte stream
*
/
UDFConpr essed[byt el ndex++] =
(uni code[uni codel ndex] & OxFF00) >> 8;
/*Then place the low bits into the stream */
UDFConpr essed[byt el ndex++] = uni code[uni codel ndex] & OxO0O0FF;
uni codel ndex++;
}
}

return(bytel ndex) ;

OSTA-Universal Disk Fermat

SHS

[00]
w

6.5 CRC Calculation

The following C program may be used to calculate the CRC-CCITT checksum
used in the TAG descriptors of 1SO/IEC 13346.

/*
* CRC 010041

*/

static unsigned short

0x0000,
0x8108,
0x1231,
0x9339,
0x2462,
OXAS6A,
0x3653,
0xB75B,
0x48C4,
0xCOCC,
OX5AF5,
OxDBFD,
0x6CAG,
OxEDAE,
Ox7E97,
OxXFFIF,
0x9188,
0x1080,
0x83B9,
0x02B1,
OxBS5SEA,
Ox34E2,
OxA7DB,
0x26D3,
0xD94C,
0x5844,
0xCB7D,
Ox4A75,
OxFD2E,
0x7C26,
OXEF1F,
Ox6E17,

b

0x1021,
0x9129,
0x0210,
0x8318,
0x3443,
0xB54B,
0x2672,
OXAT7TA,
0x58ES5,
O0xD9ED,
0x4AD4,
0xCBDC,
0x7C87,
OxFD8F,
Ox6EBS6,
OxEFBE,
0x81A9,
0x00A1,
0x9398,
0x1290,
0xA5CB,
0x24C3,
O0xB7FA,
0x36F2,
0xC96D,
0x4865,
0xDB5C,
0x5A54,
OxEDOF,
0x6Q07,
OxFF3E,
Ox7E36,

0x2042,
0xA14A,
0x3273,
0xB37B,
0x0420,
0x8528,
0x1611,
0x9719,
0x6886,
OxE98E,
0x7AB7,
0xFBBF,
0x4CE4,
0xCDEC,
Ox5EDS5,
OxDFDD,
0xB1CA,
0x30C2,
OxA3FB,
0x22F3,
0x95A8,
0x14A0,
0x8799,
0x0691,
O0xF90E,
0x7806,
OxEB3F,
0x6A37,
0xDD6C,
0x50C64,
0xCF5D,
Ox4E55,

crc_t abl e[256]

0x3063,
0xB168B,
0x2252,
OxA35A,
0x1401,
0x9509,
0x0630,
0x8738,
Ox78A7,
OXFOAF,
0Ox6A96,
OXEB9E,
0x5CC5,
0xDDCD,
Ox4EF4,
OxCFFC,
OxALEB,
0x20E3,
OxB3DA,
0x32D2,
0x8589,
0x0481,
0x97B8,
0x16B0,
OXE92F,
0x6827,
OxFBLE,
Ox7A16,
OxCDAD,
0x4CA45,
OxDF7C,
Ox5E74,

= {
0x4084,
0xC18C,
0x52BS5,
0xD3BD,
Ox64ES6,
OXE5EE,
0x76D7,
OxF7DF,
0x0840,
0x8948,
Ox1A71,
0x9B79,
0x2C22,
OxAD2A,
Ox3E13,
0xBF1B,
0xD10C,
0x5004,
0xC33D,
0x4235,
OxF56E,
0x7466,
OXE75F,
0x6657,
0x99C8,
0x18C0,
0x8BF9,
Ox0AF1,
0xBDAA,
0x3CA2,
OxAF9B,
0x2E93,

0x50A5,
OxD1AD,
0x4294,
0xC39C,
0x74Cr,
OxF5CF,
OX66F6,
OXE7FE,
0x1861,
0x9969,
0x0A50,
0x8B58,
0x3C03,
0xBDOB,
Ox2E32,
OXAF3A,
0xC12D,
0x4025,
0xD31C,
0x5214,
OXE54F,
0x6447,
OXF77E,
0x7676,
O0x89E9,
OxO08EL1,
0x9BD8,
Ox1AD0,
OxAD8B,
0x2C83,
OxBFBA,
Ox3EB2,

0x600%5,
OxELCE,
Ox72F7,
OxF3FF,
Ox44A4,
OxC5AC,
0x5695,
0xD79D,
0x2802,
OxA90A,
O0x3A33,
0xBB3B,
0x0C60,
0x8D68,
Ox1E51,
O0x9F59,
OxF14E,
0x7046,
OXE37F,
0x6277,
0xD52C,
0x5424,
0xC71D,
0x4615,
OxB98A,
0x3882,
OxABBB,
Ox2AB3,
O0x9DES8,
0x1CEQ,
Ox8FD9,
OxOEDL,

0x70E7,
OxF1EF,
0x62D6,
0x E3DE,
0x5485,
0xD68D,
0x46B4,
0xC7BC,
0x 3823,
0xB92B,
0x2A12,
OxABI1A,
0Ox1C41,
0x9D49,
0x0E70,
0x8F78,
OxE16F,
0x6067,
OxF35E,
0x 7256,
0xC50D,
0x4405,
0xD73C,
0x5634,
0xA9AB,
0x28A3,
0xBB9A,
0x3A92,
0x8DC9,
0x0CcC1,
Ox9FFS8,
Ox1EFO

unsi gned short
cksum(s, n)
regi ster unsigned char *s;
register int n;
regi ster unsigned short crc=0;
while (n-- > 0)

crc = crc_table[(crc>>8 N *s++4) & Oxff] ~ (crc<<8);

return crc;

}

#i f def MAIN
unsi gned char bytes[]

= { 0x70, Ox6A, Ox77 };
mai n()

unsi gned short x;

X =

cksum(byt es, sizeof bytes);

printf("checksum cal cul ated=%.4x, correct=%.4x\en", x, 0x3299);
exi t(0);

}

#endi f

OSFA-Universal-BiskFormat

The CRC table in the previous listing was generated by the following program:

#i ncl ude <st di o. h>

/*
* a.out 010041 for CRG-CCITT
*/

mai n(argc, argv)
int argc; char *argv[];

{
unsigned |long crc, poly;
int n, i;
sscanf (argv[1l], "% 0", &poly);
if(poly & Oxffff0000){
fprintf(stderr, "polynomal is too |arge\en");
exit(1);
printf("/*\en * CRC 0%\en */\en", poly);
printf("static unsigned short crc_table[256] = {\en");
for(n = 0; n < 256; n++){
if(n %8 == 0)
printf(" ");
crc = n << §;
for(i =0; i <8; i++){
if(crc & 0x8000)
crc = (crc << 1) ~ poly;
el se
crc <<= 1;
crc &= OxFFFF;
}
if(n == 255)
printf("0x%4X ", crc);
el se
printf("0x%®4X ", crc);
if(n %8 ==17)
printf("\en");
printf("};\en");
) exi t(0);

All the above CRC code was devised by Don P. Mitchell of AT&T Bell Laboratories and
Ned W. Rhodes of Software Systems Group.

It has been published in "Design and Validation of Computer Protocols™;,"

Prentice Hall, Englewood Cliffs, NJ, 1991, Chapter 3, ISBN 0-13-539925-4.

Copyright isheld by AT&T.

AT&T gives permission for the free use of the above source code.

OSTA-Universal Disk Format 85 Revigen1.02

6.6 Algorithm for Strategy Type 4096

This section describes a strategy for constructing an ICB hierarchy. For strategy type
4096 the root ICB hierarchy shall contain 1 direct entry and 1 indirect entry. To indicate
that there is 1 direct entry a1 shall be recorded as a Uint16 in the SrategyParameter
field of the ICB Tag field. A value of 2 shall be recorded in the

MaximumNumber OfEntries field of the ICB Tag field.

The indirect entry shall specify the address of another ICB which shall also contain 1
direct entry and 1 indirect entry, where the indirect entry specifies the address of another
ICB of the same type. Seethe figure below:

NOTE: Thisstrategy builds an ICB hierarchy that isasimple linked list of direct entries.

OSFA-Universal-BiskFormat 86 Revisen1.02

6.7 ldentifier Trandation Algorithms
The following sample source code examples implement the file identifier translation
algorithms described in this document.

The following basic algorithms may also be used to handle OS specific translations of the
Volumeldentifier, VolumeSetldentifier, Logical Volumel D and FileSetID.

6.7.1 DOSAIlqgorithm
Algeritam

/***

* OSTA UDF conpliant file name translation routine for DOCS.

* Copyright 1995 Mcro Design International, Inc.

* Witten by Jason M R nn.
M cro Design International gives perm ssion for the free use of the
foll owi ng source code.

/

E I

#i ncl ude <stddef. h>

#defi ne DOS_NAVE LEN 8

#defi ne DOS_EXT_LEN 3

#define | LLEGAL_CHAR_NMARK Ox005F
#define CRC MARK — 0Ox0023

#defi ne TRUE 1
#defi ne FALSE 0
#defi ne PERI QD 0x002E
#def i ne SPACE 0x0020

/***

* The following two typedef's are to renove conpil er dependanci es.
* byte needs to be unsigned 8-bit, and unicode_t needs to
* be unsigned 16-bit.
*/
t ypedef unsigned short unicode_t;
t ypedef unsigned char byte;

[*** PROTOTYPES ***/
unsi gned short cksun{register unsigned char *s, register int n);
int Islllegal (unicode_t current);

/* Define functions or macros to both determne if a character

* is printable and conpute the uppercase version of a character
* under your inplenentation.

*/

int Uni codel sPrint(unicode_t);
uni code_t Uni codeToUpper (uni code_t);

/***

* Transl ate udf Nane to dosNanme using OSTA conpliant.
* dosName nust be a unicode string with mn |ength of 12.
*

* RETURN VALUE

* Number of uni code characters in dosNane.
*/

nt UDFDOSNane(

uni code_t *dosNane, /* (Qutput)DOS conpati bl e nane. */
uni code_t *udf Nane, /* (Input) Nanme from UDF vol une. */
i nt udf Len, /* (Input) Length of UDF Nane. */
byt e *fi dName, /* (Input) Bytes as read from nmedia */
int fi dNameLen)/* (I nput) Nunber of bytes in fidNane.*/
{

int index, doslndex = 0, extlndex = 0, |astPeriodlndex;

OSTA Universal Digdk Format
T R =OHaE

= Did 87

int needsCRC = FALSE, hasExt = FALSE, witingExt = FALSE;
unsi gned short val ueCRC,
uni code_t ext[DOS_EXT_LEN], current;

/*Used to convert hex digits. Used ASCII for readability. */
const char hexChar[] = "0123456789ABCDEF";

for (index 0 ; index < udfLen ; index++)

{

current
current

udf Nane[i ndex] ;
Uni codeToUpper (current);

if (current == PERI OD)
if (doslndex==0 || hasExt)

/* lgnore | eadi ng periods or any other than
* used for extension.

*/

needsCRC = TRUE;

el se

{
/* First, find last character which is NOT a period

* or space.
*/
| ast Peri odl ndex = udflLen - 1;
whi | e(l ast Peri odl ndex >=0 &&
(udf Nane[| ast Peri odl ndex] == PERI CD | |
udf Nane[| ast Peri odl ndex] == SPACE))

| ast Peri odl ndex- -;

}

/* Now search for |ast renaining period. */
whi | e(l ast Peri odl ndex >= 0 &&
udf Nane[| ast Peri odl ndex] != PER CD)

| ast Peri odl ndex- -;

/* See if the period we found was the last or not. */
if (lastPeriodl ndex != index)

needsCRC = TRUE; /* If not, nane needs translation. */

}

/* As long as the period was not trailing,
* the file nane has an extension.

*/

if (lastPeriodl ndex >= 0)

hasExt = TRUE;

if ((!hasExt && doslndex == DOS_NAME_LEN) ||
ext | ndex == DOS_EXT_LEN)

{
/* File name or extension is too long for DOS. */
needsCRC = TRUE;

}

el se

{

if (current == SPACE) /* lgnore spaces. */
needsCRC = TRUE;

el se

OSTA Universal Digdk Format
T R =OHaE

SHS

0]
(0 0]

/* Look for illegal or unprintable characters. */
if (Islllegal(current) || !UnicodelsPrint(current))

needsCRC = TRUE;

current = | LLEGAL_CHAR_ MNARK;

/* Skip Illegal characters(even spaces),
*/but not peri ods.

*

whi | e(i ndex+1 < udfLen
&& (1sll1egal (udf Name[i ndex+1])
|| !'Uni codel sPrint(udf Name[i ndex+1]))
&& udf Nane[i ndex+1] !'= PERI OD)

i ndex++;

}

/* Add current char to either file nane or ext. */
if (witingExt)

{

ext [ext I ndex++] = current;
}
el se

dosNane[dosl ndex++] = current;

}
}

/* See if we are done with file name, either because we reached
* the end of the file nane length, or the final period.
*/
if (!witingExt && haskExt && (doslndex == DOS_NAME_LEN ||
i ndex == | ast Peri odl ndex))
{

/* 1f so, and the nanme has an extension, start reading it. */
writingExt = TRUE
/* Extension starts after last period. */

i ndex = | ast Peri odl ndex;
}
}
/*Now handle CRC if needed. */
if (needsCRQC)
/* Add CRC to end of file name or at position 4. */
i f (doslndex >4)
dosl ndex = 4;
val ueCRC = cksun(fi dName, fidNaneLen):
/* Convert lower—1216-bits—of CRC to hex characters. */
dosNane[dosl| ndex++] = hexChar [(val ueCRC & 0xf000) >> 12]
dosNane[dosl ndex++] = hexChar [(val ueCRC & 0x0f 00) >> 8];
dosNane[dosl ndex++] = hexChar|[(val ueCRC & 0x00f0) >> 4];
dosNane[dosl| ndex++] = hexChar [(val ueCRC & 0x000f)];
}

/* Add extension, if any. */
if (extlndex != 0)

{
dosNane[dosl ndex++] = PERI OD;
for (index = 0; index < extlndex; index++)
dosNane[dosl ndex++] = ext[index];
}

OSTA Universal Digdk Format
T R =OHaE

SAHS

0]
(@)

return(dosl ndex) ;

/***

*

Decides if a Uni code character natches one of a |ist

* of ASCI| characters.

* Used by DOS version of Islllegal for readability, since all of the
* illegal characters above 0x0020 are in the ASCI | subset of Unicode.
* Works very simlarly to the standard C function strchr().

*

* RETURN VALUE

*

* Non-zero if the Unicode character is in the given ASCI| string.
*/

int Uni codelnString(

unsi gned char *string, /* (lnput) String to search through. */

uni code_t ch) /* (Input) Unicode char to search for. */

int found = FALSE;
while (*string !I'="\0" && found == FALSE)
{

/* These types shoul d conpare, since both are unsigned nunbers. */
if (*string == ch)

found = TRUE;
}

string++;

}
return(found);

/***

*

*
*
*
*
*
*

nt

Deci des whet her character passed is an illegal character for a
DCs file nane.
RETURN VALUE
Non-zero if file character is illegal.
Islllegal (

unicode_t ch) /* (Input) character to test. */

OSTA Universal Digdk Format
T R =OHaE

/* CGenuine illegal char's for DOS. */
if (ch < 0x20 || UnicodelnString("\\/:*?2\"<>|", ch))

return(l);
el se

return(0);

SHS

<o)
(@)

6.7.2 OS2-, Macintosh,Windows 95, Windows NT and UNI X
Algorithm

/***
* OSTA UDF conpliant file name translation routine for CS/2,
* Wndows 95, Wndows NT, Macintosh and UNI X
* Copyright 1995 Mcro Design International, Inc.
* Witten by Jason M R nn.
* Mcro Design International gives permssion for the free use of the
* foll owi ng source code.
*
/

/***

* To use these routines with different operating systens.
*

* 08/ 2

Defi ne OS2

Defi ne MAXLEN = 254

W ndows 95
Define WN 95
Defi ne MAXLEN = 255

W ndows NT
Define WN NT
Defi ne MAXLEN = 255

Bl Il I B I R R]

|>(->(->(-

Maci nt osh:
Defi ne MAC.
Defi ne MAXLEN = 31.

UN

X

Define UN X
Def

i ne MAXLEN as specified by unix version.

* % ko X X X X

~

#define | LLEGAL_CHAR_NMARK Ox005F
#defi ne CRC_MARK 0x0023
#defi ne EXT_SI ZE 5
#defi ne TRUE 1
#defi ne FALSE 0
#defi ne PERI QD 0x002E
#def i ne SPACE 0x0020

/***

* The following two typedef's are to renove conpil er dependanci es.
* byte needs to be unsigned 8-bit, and unicode_t needs to
* be unsigned 16-bit.
*
/
t ypedef unsigned int unicode_t;
t ypedef unsigned char byte;

[*** PROTOTYPES ***/
int Islllegal (unicode_t ch);
unsi gned short cksun{unsigned char *s, int n);

/* Define a function or macro which determnes if a Unicode character is
* printabl e under your inplenentation.
*/

int Uni codel sPrint(unicode_t);

/***

* Translates a long file nanme to one using a MAXLEN and an il | egal

* char set in accord with the OSTA requirenments. Assunes the nane has
* already been translated to Uni code.

*

* RETURN VALUE

*

* Number of uni code characters in translated nane.

*/

OSTA Universal Digdk Format
T R =OHaE

SAHS

[0}
=

i nt UDFTr ansNane(

uni code_t *newNane, /*(Qut put) Transl at ed nane. Mist be of |ength MAXLEN+/
uni code_t *udfNane, /* (lnput) Nane from UDF vol ure. */

i nt udfLen, /* (Input) Length of UDF Nane. */

byte *fi dNane, /* (Input) Bytes as read fromnedia. */

int fidNanmeLen) /* (I'nput) Nunber of bytes in fidNane. */

{
int index, newlndex = 0, needsCRC = FALSE;

int extlndex, newextlndex = 0, haskExt = FALSE;
#ifdef (OS2 | WN 95 | WN NT)

int traillndex = 0O;
#endi f

unsi gned short val ueCRrRC

uni code_t current;

const char hexChar[] = "0123456789ABCDEF";

for (index = 0; index < udflLen; index++)

current = udf Name[i ndex];

if (Islllegal (current) || !UnicodelsPrint(current))
needsCRC = TRUE;
/* Replace Illegal and non-di splayable chars wi th underscore. */
current = | LLEGAL_CHAR MARK;
/* Skip any other illegal or non-displayable characters. */

whi | e(1 ndex+1 < udflLen && (Isl!legal (udfNanme[index+1])
|| !Unicodel sPrint(udf Name[i ndex+1])))

i ndex++;

}

/* Record position of extension, if one is found. */
if (current == PERIOD && (udflLen - index -1) <= EXT_SI ZE)

{
if (udfLen == index + 1)
/* Atrailing period is NOI an extension. */
hasExt = FALSE;
}
el se
hasExt = TRUE;
ext I ndex = index;
newext | ndex = new ndex;
}
}

#ifdef (OS2_| WN 95 | WN NT)
/* Record position of |ast char which is NOT period or space. */
else if (current != PERIOD & current != SPACE)

traill ndex = new ndex;
#endi f}
if (newl ndex < MAXLEN)
newName[newl ndex++] = current;
el se
needsCRC = TRUE;

}

#ifdef (OS2 | WN 95 | WN NT)
/* For OS2, 95 & NT, truncate any trailing periods and\or spaces. */
if (traillndex != newl ndex - 1)

new ndex = traillndex + 1;

OSTA Universal Digdk Format
T R =OHaE

SHS

[€0]
N

needsCRC = TRUE;
hasExt = FALSE; /* Trailing period does not nake an extension. */

Y
#endi f
i{f (needsCRC)

uni code_t ext [EXT_SI ZF] ;
int |ocal Extl ndex = 0;

i f (hasExt)

{

int maxFil enanelLen;

/* Translate extension, and store it in ext. */

for(index = 0; index<EXT_SIZE && extlndex + index +1 < udfLen;
i ndex++)

{

current = udf Nane[extlndex + index + 1];
if (Islllegal (current) || !lisprint(current))

needsCRC = 1;

/* Replace Illegal and non-displ ayabl e chars
* with underscore.

*
/

current = | LLEGAL_CHAR MARK;

/* Skip any other illegal or non-displayable
* characters.
*/

1 < EXT_SI ZE

(I'slllegal (udf Nane[ext | ndex + index + 2

lisprint(udf Nane[ext | ndex + index + 2])

whi | e(i ndex +
&& 1)
[))

i ndex++;

}
ext [| ocal Ext |l ndex++] = current;

}

/* Truncate filename to | eave roomfor extension and CRC. */
maxFi | enaneLen = ((MAXLEN - 4) - |ocal Extlndex - 1);
if (newl ndex > maxFil enaneLen)

new ndex = naxFil enanelLen;
el se

new ndex = newkxt | ndex;

else if (newl ndex > MAXLEN - 45)

/*If no extension, nake sure to | eave roomfor CRC */
newl ndex = MAXLEN - 45;

}
newNanme[newl ndex++] = CRC_MARK; /* Add nark for CRC */

/*Cal culate CRC fromoriginal filenane fromFileldentifier. */
val ueCRC = cksun(fi dNane, fidNaneLen);

/* Convert lower—1216-bits of CRC to hex characters. */
newNanme[newl ndex++] hexChar [(val ueCRC & 0Oxf000) >> 12];
newNanme[newl ndex++] hexChar [(val ueCRC & 0x0f 00) >> 8];
hexChar [(val ueCRC & 0x00f Q) >> 4];

newNanme[newl ndex++]
newNane[new ndex++] hexChar [(val ueCRC & 0x000f)];

/* Place a translated extension at end, if found. */
i f (hasExt)
{

newName[newl ndex++] = PERI OD;
for (index = 0;index < |ocal Extl ndex ;index++)

newNane[new ndex++] = ext[index];

OSTA Universal Digdk Format
T R =OHaE

s Dig 93

}
}

return(new ndex);

#ifdef (0OS2_| WN 95 | WN NT)
/***
* Decides if a Unicode character natches one of a |ist

* of ASClI| characters.

* Used by OS2 version of Islllegal for readability, since all of the
* illegal characters above 0x0020 are in the ASCI 1 subset of Unicode.
* Wrks very simlarly to the standard C function strchr().

*

* RETURN VALUE

*

* Non-zero if the Unicode character is in the given ASCI| string.
*/

int Uni codelnString(

unsi gned char *string, /* (lnput) String to search through. */

uni code_t ch) /* (Input) Unicode char to search for. */
int found = FALSE;
while (*string !'="\0" && found == FALSE)
{

/* These types shoul d conpare, since both are unsigned nunbers. */
if (*string == ch)

found = TRUE;
string++;
return(found);
;};ﬁendif [* 082 */

/***

* Deci des whether the given character is illegal for a given CS.
*

* RETURN VALUE

*

* Non-zero if char is illegal.

*

nt Islllegal (uni code_t ch)

~——

#i f def MAC
/* Only illegal character on the MACis the colon. */
if (ch == 0x003A)
return(l);
el se
return(0);

#el if defined UNI X
/* 1llegal UN X characters are NULL and sl ash. */
if (ch == 0x0000 || ch == 0x002F)
return(l);
el se
return(0);
#elif defined (OS2 | WN 95 | WN NT)

/* 1llegal char's for OS/2 according to WARP tool kit. */
if (ch < 0x0020 || UnicodelnString("\\/:*2\"<>|", ch))

return(l);

OSTA Universal Digdk Format
T R =OHaE

SHS

<o)
NS

}

el se
return(0);

#endi f
}

OSTA Lniv
ot

@
{3
o)

g Earmat O Ravigdon1 02
+S<=OHAGE ~EVISOR=1-92

IO

b

6.8 Extended Attribute Checksum Algorithm
/
Cal cul ates a 16-bit checksum of the Inplenentation Use
Extended Attribute header. The fields AttributeType
through I npl ementationldentifier inclusively represent the
data covered by the checksum (48 bytes).
/

Ui nt16 Conput eEAChecksun{byte *dat a)
{

* % kX X X F

U nt 16 checksum = O;
U nt count ;

for(count = 0; count < 48; count ++)

checksum += *dat a++;

}

return(checksum);

OSTA Universal Digdk Format o
T AYerFSaHS<=0HAE

6.9 Requirementsfor DVD-ROM
This appendix defines the requirements and restrictions for UDF formatted DV D-ROM
discs.

* DVD-ROM discs shall be mastered with the UDF file system

* DVD-ROM discs shall consist of asingle volume and a single partition.

NOTE:. Thedisc may also include the SO 9660 file system. If the disc contains both
UDF and 1SO 9660 file systems it shall be known as a UDF Bridge disc. This UDF
Bridge disc will allow playing DVD-ROM media in computers immediately-which may
only support SO 9660. As UDF computer implementations are provided, the need for

1 SO 9660 will disappear, and future discs should contain only UDF.

If you intend to do any DV D development with UDF, please make sure that you fill out
the OSTA UDF Developer Registration Form located in appendix 6.11. For planned
operating system, check the Other box and writein DVD.

6.9.1 Constraintsimposed by UDF for DVD-\/ideo-Video

This section describes the restrictions and requirements for UDF formatted DV D-Video
discs for dedicated DV D content players. DVD-Video is one specific application of
DVD-ROM using the UDF format for the home consumer market. Due to limited
computing resources within a DV D player, restrictions and requirements were created so
that a DVD player would not have to support every feature of the UDF specification.

All DVD-Video discs shall be mastered to contain all required data as specified by 1SO
13346 and UDF. Thiswill alewease playing of DVD-Video in computer systems.
Examples of such data include the time, date, permission bits, and a free space map
(indicating no free space). While DVD player implementations may ignore these fields, a
UDF computer system implementation will not. Both entertainment-based and computer-
based content can reside on the same disc.

In an attempt to reduce code size and improve performance, all division described is
integer arithmetic; all denominators shall be 2*n, such that al divisions may be carried
out via logical shift operations.

» A DVD player shall only support UDF and not 1SO 9660.

- Originating systems shall constrain individual files to be less than than or equal to 2*°
- Logical Block Sze bytes in length.

* Thedataof each file shall be recorded as a single extent. Each File Entry shall be
recorded using the ICB Strategy Type 4.

» Fileand directory names shall be compressed as 8 bits per character using OSTA
Compressed Unicode format .

OSTA Universal Digdk Format
T R =OHaE

SHS

(o}
~

» A DVD player shall not be required to follow symbolic links to any files.

* TheDVD-Video files shall be stored in a subdirectory named "VIDEO_TS" directly
under the root directory. Directory names are standardized in the DVD Specifications
for Read-Only Disc document.

NOTE: The DVD Specifications for Read-Only Disc is a document, developed by
the DV D Consortium, that describes the names of all DVD-Video filesand a DVD-
Video directory which will be stored on the media, and additionally describes the
contents of the DVD-Video files.

* Thefilenamed "VIDEO_TS.IFO" inthe VIDEO_TS subdirectory shall be read first.

All the above constraints apply only to the directory and files which the DVD player
needs to access. There may be other files and directories on the media which are not
intended for the DVD player and do not meet the above listed constraints. These other
files and directories are ignored by the DVD player. Thisiswhat enablesthe ability to
have both entertainment-based and computer-based content on the same disc.

6.9.2 How toread a UDF disc
This section describes the basic proceduresthat aDVD player would go through to read a
UDF formatted DV D-Video disc.

6.9.2.1 PROCEDUREStep 1. Volume Recognition Sequence
Find a NSRISO 13346 Descriptor in a volume recognition area which shall start at
logical sector 16.

6.9.2.2 PROCEDUREStep 2. Anchor Volume Descriptor Pointer
The Anchor Volume Descriptor Pointer which is located at an anchor point must be
found. Duplicate anchor points shall be recorded at logical sector 256 and logical
sector n, where n is the highest numbered logical sector on the disc.

A DVD player only needsto look at logical sector 256; the copy at logical sector nis
redundant and only needed for defect tolerance. The Anchor Volume Descriptor
Pointer contains three things of interest:
1. Static structuresthat may be used to identify and verify integrity of the disc.
2. Location of the Main Volume Descriptor Sequence (absolute logical sector
number)
3. Length of the Main Volume Descriptor Sequence (bytes)

The data located in bytes 0-3 and 5 of the Anchor VVolume Descriptor Pointer may be
used for format verification if desired. Verifying the checksum in byte 4 and CRC in
bytes 8-11 are good additional verificationsto perform. MVDS_Location and
MVDS Length are read from this structure.

6.9.2.3 PROCEDUREStep 3. Volume Descriptor Sequence
Read logical sectors:

OSTA Universal Digdk Format
T R =OHaE

SHS

€]
(e0)

MVDS_Location through MVDS Location + (MVDS Length - 1) / SectorSize

The logical sector size shall be 2048 bytes for DVD media. If this sequence can not
be read, a Reserve Volume Descriptor Sequence should be read.

The Partition Descriptor shall be a descriptor with atag identifier of 5. The partition
number and partition location shall be recorded in logical sector number.

Partition_Location and Partition_Length are obtained from this structure.

The Logical Volume Descriptor shall be a descriptor with atag identifier of 6. The
location and length of the File Set Descriptor shall be recorded in logical block
number.

FSD_Location, and FSD_L ength are returned from this structure.

6.9.24 PROCEDUREStep 4. File Set Descriptor
The File Set Descriptor is located at logical sector numbers:

Partition_Location + FSD_L ocation through
Partition_Location + FSD_L ocation + (FSD_Length - 1) / BlockSize

RootDir_Location and RootDir_Length shall be read from the File Set Descriptor in
logical block number.

6.9.25 PROCEDUREStep 5. Root Directory File Entry
RootDir_Location and RootDir_Length define the location of aFile Entry. The File
Entry describes the data space and permissions of the root directory.

The location and length of the Root Directory is returned.

6.9.2.6 PROCEDUREStep 6. Root Directory
Parse the datain the root directory extent to find the VIDEO_TS subdirectory.

Find the VIDEO_TS File Identifier Descriptor. The name shall be in 8 bit
compressed UDF format. Verify that VIDEO_TSis adirectory.

Read the File Identifier Descriptor and find the location and length of a File Entry
describing the VIDEO_TS directory.

6.9.2.7 PROCEDUREStep 7. File Entry of VIDEO_TS
The File Entry found in the step above describes the data space and permissions of
the VIDEO_TS directory.

The location and length of the VIDEO_TS directory is returned.

OSTA Universal Digdk Format
T R =OHaE

SHS

<o)
@)

6.9.2.8 PROCEDURESIep 8. VIDEO_TSdirectory
The extent found in the step above contains sets of File Identifier Descriptors. Inthis
pass, verify that the entry pointsto afile and is named VIDEO_TS.IFO.

6.9.29 PROCEDUREStep 9. FileEntry of VIDEO_TS.IFO

The File Entry found in the step above describes the data space and permissions of
the VIDEO_TS.IFOfile.

The location and length of the VIDEO_TS.IFO file is returned.

Further files can be found in the same manner asthe VIDEO_TS.IFO file when
needed.

6.9.3 Obtaining DVD Documents
-Decuments

To obtain a copy of the DVD Specifications for Read-Only Disc document as well as
other DVD related material, contact the feHowing persen:

Toshiba Corporation

ToshibaBLDG. 13D

DVD Division

1-1 Shibaura 1-Chome, Minato-ku, Tokyo 105-01, JAPAN
Mr. Y. Mizutani

E-mail: 000092030295@tg-mail.toshiba.co.jp

6.10 Recommendationsfor CD M edia

CD Media (CD-R and CD-RW) requires special consideration due to its nature. CD was
originally designed for read-only applications which affects the way in which it is
written. The following guidelines are established to ensure interchange.

The VAT may be located by using READ TRACK INFORMATION (for unfinished
media) or READ TOC or READ CD RECORDED CAPACITY for finished media. See
X3T10-1048D (SCSI-3 Multi Media Commands).

Each file and directory shall be described by asingle direct ICB. The ICB should be
written after the file datato allow for data underruns during writing, which will cause
logical gapsinthefiledata. The ICB can be written afterward which will correctly
identify all extents of thefile data. The ICB shall be written in the datatrack, the file
system track (if it exists), or both.

6.10.1 Useof UDF on CD-R media

| SO 13346 reguires an Anchor Volume Descriptor Pointer (AVDP) a sector 256 and
either N or (N - 256), where n is the last recorded Physical Address on the media. UDF
requires that the AV DP be recorded at both sector 256 and sector (N - 256) when each
session is closed. The file system may be in an intermediate state before closing and still
be interchangeable, but not srictly in compliance with 1SO 13346. Inthe intermediate
state, only one AVDP exists. It should exist at sector 256, but if thisis not possible due
to atrack reservation, it shall exist at sector 512.

| mplementations should place file system control structures into virtual space and file
datainto real space. Reader implementations may cache the entire VAT ; the size of the
VAT should be considered by any UDF originating software. Computer based
implemenations are expected to handle VAT sizes of at least 64K bytes; dedicated player
implementations may handle only smaller sizes.

6.10.1.1 Requirements

e Writing shall use Mode 1 or Mode 2 Form 1 sectors. On one disc, either Mode 1 or
Mode 2 Form 1 shall be used; a mixture of Mode 1 and Mode 2 Form 1 sectors on
one disc is not allowed.

* |f Mode 2 Form 1 is used, then the subheader bytes of all sectors used by the user
data files and by the UDF structures shall have the following value:

File number =0
Channel number =0
Submode = 08h

Coding information =0

OSTA Univearcal Didk Earmat Ravigdon1 02
o HHer HS<TOHAGE ~EviH Laa= =i

§
=
o
=

¢

e Anintermediate state is allowed on CD-R media in which only one AVDP is
recorded; this single AV DP shall be at sector 256 or sector 512 and according to the
multisession rules below.

» Sequential file system writing shall be performed with variable packet writing. This
allows maximum space efficiency for large and small updates. Variable packet
writing is more compatible with CD-ROM drives as current models do not support
method 2 addressing required by fixed packets.

e TheLogical Volume Integrity descriptor shall be recorded and the volume marked as
open. Logical volume integrity can be verified by finding the VAT ICB at the last
recorded Physical Address. |If the VAT ICB is present, the volume is clean; otherwise

it isdirty.

» The Partition Header descriptor, if recorded, shall specify no Unallocated Space
Table, no Unallocated Space Bitmap, no Partition Integrity Table, no Freed Space
Table, and no Freed Space Bitmap. The drive is capable of reporting free space
directly, eliminating the need for a separate descriptor.

e Each surface shall contain 0 or 1 read only partitions, O or 1 write once partitions, and
0 or 1 virtual partitions. CD media should contain 1 write once partition and 1 virtual

partition.

6.10.1.2 “Bridge’ formats

| SO 9660 requires a Primary Volume Descriptor (PVD) at sector 16. If an SO 9660 file
system is desired, it may contain references to the same files as those referenced by SO
13346 structures, or reference adifferent set of files, or acombination of the two.

It is assumed that early implementations will record some | SO 9660 structures but that as
implementations of UDF become available, the need for 1SO 9660 structures will
decrease.

If an 1SO 9660 bridge disc contains Mode 2 Form 1 sectors, then the CD-ROM XA
extensions of SO 9660 must be used.

6.10.1.3 End of session data

A session is closed to enable reading by CD-ROM drives. The last complete session on
the disc shall conform completely to SO 13346 and have two AVDPsrecorded. This
shall be accomplished by writing data according to End of session data table below.
Although not shown in the following example, the data may be written in multiple

packets.

OSTA Univearcal Didk Earmat 109 Ravigdon1 02
o HHer HS<TOHAGE ~EviH Laa= =i

End of session data

Count Description
1 Anchor Volume Descriptor Pointer
255 I mplementation specific. May contain user
data, file system structures, and/or link areas.
1 VAT ICB.

The implementation specific data may contain repeated copies of the VAT and VAT ICB.
Compatibility with drives that do not accurately report the location of the last sector will
be enhanced. Implementations shall ensure that enough space is available to record the
end of session data. Recording the end of session data brings a volume into compliance
with SO 13346.

6.10.2 Use of UDF on CD-RW media

CD-RW mediais randomly readable and block writable. This means that while any
individual sector may be read, writing must occur in blocks containing multiple sectors.
CD-RW systems do not provide for sparing of bad areas. Writing rules and sparing
mechanisms have been defined.

6.10.2.1 Requirements
* Writing which conforms to this section of the standard shall be performed using fixed
length packets.

e Writing shall be performed using Mode 1 or Mode 2, Form 1 sectors. On one disc,
either Mode 1 or Mode 2 Form 1 shall be used.

* |f Mode 2 Form 1 is used, then the subheader bytes of all sectors used by the user
data files and by the UDF structures shall have the following value:

File number =0
Channel number =0
Submode = 08h

Coding information =0

OSTA Univearcal Didk Earmat 10D Ravigdon1 02
o HHer HS<TOHAGE ~EviH LRae

e The host shall perform read/modify/write to enable the apparent writing of single 2K
sectors.

* The packet length shall be set when the disc is formatted. The packet length shall be
32 sectors (64 KB).

* Thehost shall maintain alist of defects on the disc using a Non-Allocatable Space
List (see 2.3.13).

e Sparing shall be managed by the host via the sparable partition and a sparing table.

e Discs shall be formatted prior to use.

6.10.2.2 Formatting

Formatting shall consist of writing alead-in, user data area, and lead-out. These areas
may be written in any order. This physical format may be followed by a verification
pass. Defects found during the verification pass shall be enumerated in the Non-
Allocatable Space list (2.3.13). Finally, file system root structures shall be recorded.
These mandatory file system and root structures include the Volume Recognition
Seguence, Anchor Volume Descriptor Pointers, aVolume Descriptor Sequence, aFile
Set Descriptor and a Root Directory.

The Anchor Volume Descriptor Pointers shall be recorded at sectors 256 and N - 256,
where N is the Physical Address of the last addressable sector.

Allocation for sparing shall occur during the format process. The sparing allocation may
be zero in length.

The free space descriptors shall be recorded and shall reflect space allocated to defective
areas and sector sparing areas.

The format may include all available space on the medium. However, if requested by the
user, asubset may be formatted to save formatting time. That smaller format may be
later “grown” to the full available space.

OSTA Lniv
oY

@
3
v
/78
'y
;
8
LY
)

Ravigdon1 02
~EviH Laa= =i

6.10.2.3 Growing the For mat

If the medium is partially formatted, it may be later grownto alarger size. This
operation consists of:

» Optionally erase the lead-in of the last session.

* Optionally erase the lead-out of the last session.

* Write packets beginning immediately after the last previously recorded packet.

e Update the sparing table to reflect any new spare areas

e Adjust the partition map as appropriate

e Update the free space map to show new available area

e Movethelast AVDPto the new N - 256

 Writethe lead-in (which reflects the new track size)

e Write the lead-out

6.10.2.4 Host Based Defect M anagement

The host shall perform defect management operations. The CD format was defined
without any defect management; to be compatible with existing technology and
components, the host must manage defects. There are two levels of defect management:
Marking bad sectors a format time and on-line sparing. The host shall keep the tables on
the media current.

6.10.2.5 Read M odify Write Operation

CD-RW media requires large writable units, as each unit incurs a 14KB overhead. The
file system requires a 2KB writable unit. The difference in write sizes is handled by a
read-modify-write operation by the host. An entire packet is read, the appropriate
portions are modified, and the entire packet written to the CD.

Note that packets may not be aligned to 32 sector boundaries.

6.10.2.6 Levelsof Compliance

6.10.2.6.1 Level 1

The disc shall be formatted with exactly one lead-in, program area, and lead-out. The
program area shall contain exactly one track. The start of the partition shall be on a
packet boundary. The partition length shall be an integral multiple of the packet size.

6.10.2.6.2 Level 2
The last session shall contain the UDF file system. All prior sessions shall be contained
in one read-only partition.

OSTA Univearcal Didk Earmat EWY Ravigdon1 02
o HHer HS<TOHAGE ~EviH Laa= =i

6.10.2.6.3 Level 3
No restrictions shall apply.

6.10.3 Multisession and Mixed M ode

The Volume Recognition Sequence and Anchor Volume Descriptor Pointer locations are
specified by 1SO 13346 to be at alocation relative to the beginning of the disc. The
beginning of adisc shall be determined from a base address Sfor the purposes of finding
the VRS and AVDP.

‘S isthe Physical Address of the first data sector in the first recorded datatrack in the
last existent session of the volume. ‘S isthe same value currently used in multisession

| SO 9660 recording. The first track in the session shall be adatatrack.

‘N’_isthe physical sector number of the last recorded data sector on a disc.

If random write mode is used, the media may be formatted with zero or one audio
sessions followed by exactly one writable data session containing one track. Other
session configurations are possible but not described here. There shall be no more than
one writable partition or session at one time, and this session shall be the last session on
the disc.

6.10.3.1 Volume Recognition Seqguence
The following descriptions are added to UDF (see also | SO/IEC 13346 Part 2) in order to
handle a multisession disc.

* The volume recognition area of the UDF Bridge format shall be the part of the
volume space starting at sector S+ 16.

* The volume recognition space shall end in the track in which it begins. As aresult of
this definition, the volume recognition area always exists in the last session of a disc.

* When recorded in Random Access mode, a duplicate Volume Recognition Sequence
shall be recorded beginning at sector N - 256.

6.10.3.2 Anchor Volume Descriptor Pointer

Anchor Volume Descriptor Pointers (AVDP) shall be recorded at the following logical
sector numbers. S+ 256 and N - 256. The AVDP at sector N - 256 shall be recorded
before closing a session; it may not be recorded while a session is open.

6.10.3.3 UDF Bridge format

The UDF Bridge format allows UDF to be added to a disc that may contain another file
system. A UDF Bridge disc shall contain a UDF file system in its last session. The last
session shall follow the rules described in “Multisession and Mixed Mode’ section
above. The disc may contain sessions that are based on 1SO 9660, audio, vendor unique,
or acombination of file syssems. The UDF Bridge format allows CD enhanced discs to
be created.

The UDF session may contain pointersto datain other sessions, pointers to data only
within the UDF session, or a combination of both. Some examples of UDF Bridge discs
are shown below.

OSTA Univearcal Didk Earmat 10 Ravigdon1 02
oA erSaHS<—0OHAGE ~EviH Laa= =i

Multisession UDF disc

Accessto LSN=16+x Accessto LSN=256

LSN=0

vL = ’ : \ T A 4
| ‘ \ [|
—> \ >
16 sectors R 16 sectors R
256 sectors g N-256 / 256 sectors g

LSN=S

&
<

|Fir51 Session |

" 1% Recorded Track in the last session

|:| : Volume recognition area

I : Anchor point

CD enhanced disc

:|_St %S' on 2nd %S' on
UDF Session amp
Playable by conventional CD-Player Used by UDF

SO 9660 converted to UDF

1% session 2" session 3" session

9660 Session 9660 Session UDF Session

S

v

Written by conventional 9660 formatter software

S

Managed by UDF

v

Foreign format converted to UDF

1% session 2" session 3" session

Data Session Data Session UDF Session

S

v

Written by another file system

S

Managed by UDF

v

5.106.11 UDF Media Format Revision History

The following table shows when changes to the UDF Specification have taken place that
affect the UDF format that can be recorded on a piece of media. The Document Change
Notices (DCNs) which document a specific change are referenced in the table. The
column Update in UDF Revision describes which revision of the UDF specification that
the change wasincluded. The fields Minimum UDF Read Revision and Minimum UDF
Write Revision relate to the Revision Access Control fields described in DCN 962-015.

Description DCN Updated in Minimum Minimum
UDF UDF Read UDF Write
Revision Revision Revision

Allocation Extent Descriptor 962- 1.02 1.02 1.02
002

Path Component File Version Number 962- 1.02 1.02 1.02
003

Parent Directory Entries 962- 1.02 1.02 1.02
004

Device Specification Extended Attribute 962- 1.02 101 1.02
005

Maximum Logical Extent Length 962- 1.02 1.02 1.02
006

Unallocated Space Entry 962- 1.02 1.01 1.02
008

DVD Copyright Management Information 962- 1.02 1.02 1.02
009

Logical Volume Identifier 962- 1.02 1.01 1.02
010

Extent Length Field of an Allocation Descriptor 962- 1.02 1.01 1.02
012

Non-relocatable & Contiguous Flags 962- 1.02 1.01 1.02
013

Revision of Requirements for DVD-ROM 962- 1.02 1.02 1.02
014

Revision Access Control 962- 1.02 1.01 1.02
015

Volume Set Identifier 962- 1.02 1.01 1.02
017

UniquelDs for Extended Attributes 962- 1.02 1.02 1.02
018

Clarification of Dstrings 962- 1.02 101 1.02
019

Application FreeEASpace Extended Attribute 962- 1.02 1.02 1.02
020

Update of Identifier Suffix to 1.02 962- 1.02 1.02 1.02
021

Update of Identifier Suffix to 1.50 2-025 1.50 1.50 1.50

Virtua Partition Map Entry 2-026 1.50 1.50 1.50

Allocation of Sparable Partition Map 2-027 1.50 1.50 1.50

Addition of Virtua Allocation Table 2-028 1.50 1.50 1.50

Addition of Sparing Table 2-029 1.50 1.50 1.50

Addition of Non-Allocatable Space List 2-030 1.50 1.50 1.50

Reccommmendations for CD M eq a 2-031 1.50 1.50 1.50

6-116.

12 Developer Registration Form

Any developer that plans on implementing | SO/IEC 13346 according to this document
should complete the developer registration form on the following page. By becoming a
registered OSTA developer you receive the following benefits:

* Youwill receive alist of the current OSTA registered developers and their

associated |mplementation Identifiers. The developersonthislist are
sthace ncourziqed to mterchange medlaw%hye&to verlfy datainterchange

i mpl ementatlons

* Notification of OSTA Technical Committee meetings. Y ou may attend a

[imited number of this meetings without becoming an official OSTA member.

e You can be added to the OSTA Technical Committee email reflector. This

reflector provides you the opportunity to post technical questions on the OSTA
Universal Disk Format Specification.

* You will receive an invitation to participate in the development of the next

revision of this document.

For the latest information on OSTA and UDF visit the OSTA web site at the following

address:

MNCTA_
AS4AC A VAW

Optical Storage

http://www.osta.org

Technology Association

Name:

OSTA Universal Disk Format Specifid
Developer Registration

Company:

Address;

City:

State/Province:

Zip/Postal Code:
Country:

Phone:

FAX:

Email:

OSTA- Un

iversal Disk-Format

SHS

=
=
o

ration

Form

Planned-Operating-Systems-Support
Please indicate on which operating systemsyou plan to support +SOAEC13346UDE:

—-0O DOS -0 092 —— 0O Macintosh B
—0O UNIX/POSIX —0O Windows NT — O Windows 95
—0O Other
Please indicate which media types you plan to support:
O Magneto Optical O WORM O Phase Change
O CD-ROM O CD-R O CD-RW

O DVD-ROM O DVD-R O DVD-RAM O DVD-Video

Hplementatien-tdentitierO Other

Please indicate what value you plan to usein the | mplementation I dentifier field of
the Entity Identifier descriptor to identify your implementation:

NOTE: Theidentifier should be something that uniquely identifies your company as well as your product.
Miscellaneous
—Q Please add my email addressto the OSTA Technical Committee email reflector.
—O Please send an OSTA Membership kit.

FAX Completed form to OSTA at 1-805-962-1541, or mail to:
OSTA, 311 E. Carillo Street, SantaBarbara, CA 93101

=
=
=

A

Allocation Descriptor, 57, 2836, 2240, 3341
Allocation Extent Descriptor, 3441
Anchor Volume Descriptor Pointer, 46, 158

C

CD-R, 2, 3,4, 25, 26, 100, 101, 102, 104

CD-RW, 2,100, 102

Charspec, 79

Checksum, 484950515356, 57, 8758, 59, 60, 61
65, 95

CRC, 135, 2331, 3240, 7382, 7584

CS0, 68, 79, 162, 146, 157, 169, 213, 2533, 5866, 668,

6270

D

defect management, 25, 28, 104

Descriptor Tag, 135, 2331, 3240

Domain, 1,8,-9,10i, 11, 13

DOS, 3746, 3847, 4251, 4352, 496157, 69, 7478,
7986, 87, 88, 809, 8194110

Dstrings, 79

DVD, 2, 4856, 4957, 6876, 8877, 8996, 967, 918, 929,

108

DVD Copyright Management Information, 4856,
4957, 6876, 92108

DVD-Video, 8896, 8997

E

Entity Identifier, 46, 810, 9131411, 15, 16, 17, 18,
19, 201, 243, 2532, 33, 2634, 2735, 308, 31329,
40, 479, 55, 5664, 6876, 77

Extended Attributes, 3, 26,-44.-45-47-48-49-50,512,
52, 53, 54;-55, 56, 57, 6858, 59, 60, 61, 62, 63, 64,
65, 76

Extent Length, 46, 5362, 5492108

F

File Entry, 57, 912, 308, 409, 4654, 5361, 6876
File Identifier Descriptor, 911, 2735, 3746, 5967
File Set Descriptor, 57, 911, 2331, 2533
FreeSpaceTable, 1820, 1921

H
HardWriteProtect, 113, 1749, 2432, 2634

ICB, 57, 2735, 2836, 3746, 3847, 4452, 5866, 5967

ICB Tag, 57, 2836, 3847, 5866

Implementation Use Volume Descriptor, 911, 213,
6674

OSTA Lniv
ot

@
]
o)

g Earmat
+S<=OHAGE

b

Implementationldentifier, 141516, 17, 18, 19, 203,
2533, 308, 31,329, 40, 4#-48;-49, 56,-51-53;55,
56, 57, 58, 59, 61, 63, 64

ISO/IEC 13346, 4

L

Logical Block Size, 46, 57, 179

Logical Sector Size, 46

Logical Volume Descriptor, 57, 91611, 18, 1920, 22

Logical Volume Header Descriptor, 1921, 3645

Logical Volume Integrity Descriptor, 192, 179, 1820,
3240

LogicalVolumel dentifier, 57

M

Macintosh, 3, 262136372, 39, 43445, 46, 48, 55;
5152, 53,54, 55,56, 58, 59, 60, 61, 62, 63, 64,
68, 6971, 76, 78, 90, 8294110

N

NetWare, 6979
Non-Allocatable Space, 29, 30, 42, 103

O

Orphan Space, 6674

0S/2, 3, 3746, 3847, 4251, 4348495052, 56, 597,
6158, 624, 67, 68, 6970, 76, 77, 8278, 8690, 94,
110

Overwritable, 2,46

P

Partition-Deseriptor-4-9.-66,90packet, 4, 5, 25, 26
28, 29, 30, 101, 102, 103, 104

Partition Descriptor, 6, 11, 74, 98
Partition Header Descriptor, 2634
Partition Integrity Entry, 57, 162, 3240
Pathname, 2442

Primary Volume Descriptor, 46, 911, 135

R

Read-Only, 3,46
Records, 57, 2443
Rewritable, 26, 34, 2623241

S

SizeTable, 1820, 1921
SoftWriteProtect, 113, 179, 34
Sparable Partition Map, 25

Sparing Table, 12, 26, 28, 29, 76, 77
strategy, 57, 2432, 2836
SymbalicLink, 5866

T

TagSerialNumber, 135, 2331
Timestamp, 46, 810, 1820, 3544

U

Unallocated Space Descriptor, 57, 1820

Unicode, 68, 79, 5967, 698, 780

UniquelD, 1821, 308, 319, 3645, 409, 4452, 5361,
5462, 683, 9276, 77, 108

UNIX, 37-39, 5546, 6448, 63, 72, 73

OSTA Lniv
ot

@
{3
o)

g Earmat
+S<=OHAGE

b

v

VAT, 5, 25, 26, 27, 28, 51, 100, 101, 102
Virtuad Allocation Table, 5, 26, 27, 28
virtual partition, 25, 27, 101

Virtud Partition Map, 25

\W

Windows, 3746, 3847, 4957, 619
Windows 95, 6946, 47, 72, 78, 110

Windows NT, 6946, 47, 57, 72, 78, 79, 90, 110

WORM, 26, 420, +7,-2432

Ravigdon1 02
~EVISOR=1-92

