
Universal Disk
Format™

Specification

Revision 1.0250

August 30February 4, 19967
 Copyright 1994, 1995, 1996, 1997

Optical Storage Technology Association
ALL RIGHTS RESERVED

OSTA-2
Revision 1.50
4 Feb 97

Revision History:
1.00 October 24, 1995 Original Release
1.01 November 3, 1995 DVD appendix added
1.02 August 30, 1996 Incorporates Document Change Notices

DCN 2-001 through DCN 2-024
1.50 February 4, 1997 Integrated support for CD-R and CD-RW media

(DCN 2-025 through DCN 2-032)

Optical Storage Technology Association
311 East Carrillo Street

Santa Barbara, CA 93101
(805) 963-3853 Voice
(805) 962-1541 Fax

info@osta.org
http://www.osta.org

This document along with the sample source code is available in electronic format from OSTA.

Important Notices

This document is a specification adopted by Optical Storage Technology Association (OSTA). This document may be revised by OSTA. It is intended
solely as a guide for companies interested in developing products which can be compatible with other products developed using this document. OSTA
makes no representation or warranty regarding this document, and any company using this document shall do so at its sole risk, including specifically the
risks that a product developed will not be compatible with any other product or that any particular performance will not be achieved. OSTA shall not be
liable for any exemplary, incidental, proximate or consequential damages or expenses arising from the use of this document. This document defines only
one approach to compatibility, and other approaches may be available in the industry.

This document is an authorized and approved publication of OSTA. The underlying information and materials contained herein are the exclusive
property of OSTA but may be referred to and utilized by the general public for any legitimate purpose, particularly in the design and development of
writable optical systems and subsystems. This document may be copied in whole or in part provided that no revisions, alterations, or changes of any kind
are made to the materials contained herein. Only OSTA has the right and authority to revise or change the material contained in this document, and any
revisions by any party other than OSTA are totally unauthorized and specifically prohibited.

Compliance with this document may require use of one or more features covered by proprietary rights (such as features which are the subject of a patent,
patent application, copyright, mask work right or trade secret right). By publication of this document, no position is taken by OSTA with respect to the
validity or infringement of any patent or other proprietary right, whether owned by a Member or Associate of OSTA or otherwise. OSTA hereby
expressly disclaims any liability for infringement of intellectual property rights of others by virtue of the use of this document. OSTA has not and does
not investigate any notices or allegations of infringement prompted by publication of any OSTA document, nor does OSTA undertake a duty to advise
users or potential users of OSTA documents of such notices or allegations. OSTA hereby expressly advises all users or potential users of this document
to investigate and analyze any potential infringement situation, seek the advice of intellectual property counsel, and, if indicated, obtain a license under
any applicable intellectual property right or take the necessary steps to avoid infringement of any intellectual property right. OSTA expressly disclaims
any intent to promote infringement of any intellectual property right by virtue of the evolution, adoption, or publication of this OSTA document.

Universal Disk Format™ and UDF™ are trademarks of the Optical Storage Technology Association.

i

CONTENTS

1. INTRODUCTION... 1

1.1 Document Layout... 1

1.2 COMPLIANCE ...

1.1 Document Layout..2

2. Basic Restrictions & Requirements..

1.2 Compliance ...3

21.1 Part 1 -3 General References ..3

2.1.1 Character Sets..
1.3.1 References...3
2.1.2 OSTA CS0 Charspec...
1.3.2 Definitions ..4
2.1.3.3 DstringsTerms..5
2.1.4 Timestamp ..
2. Basic Restrictions & Requirements.. 6

2.1.5 ENTITY IDENTIFIER ..
2.1 Part 1 - General ..8

2.2 Part 3 - Volume Structure ..

2.1.1 Character Sets..8
2.2.1 Descriptor Tag...
2.1.2 OSTA CS0 Charspec...9
2.2.2 Primary Volume Descriptor ...
2.1.3 Dstrings...9
2.2.3 Anchor Volume Descriptor Pointer ..
2.1.4 Timestamp ..10
2.2.4 Logical Volume Descriptor..
2.1.5 Entity Identifier ...10
2.2.5 Unallocated Space Descriptor ..

2.2 Part 3 - Volume Structure ..15
2.2.6 Logical Volume Integrity1 Descriptor Tag...15
2.2.7 Implemention Use2 Primary Volume Descriptor ..15
2.3 Part 4 - File System ..
2.2.3 Anchor Volume Descriptor Pointer .. 18
2.32.14 Logical Volume Descriptor Tag ...18
2.32.2 File Set5 Unallocated Space Descriptor..20
2.32.3 Partition Header6 Logical Volume Integrity Descriptor ..20
2.32.4 File Identifier7 Implemention Use Volume Descriptor..23
2.3.5 ICB Tag ..
2.2.8 Virtual Partition Map...25

ii

2.3.6 File Entry ..
2.2.9 Sparable Partition Map ..25
2.3.7 Unallocated Space Entry..
2.2.10 Virtual Allocation Table ..26
2.3.8 Space Bitmap Descriptor ...
2.2.11 Sparing Table ..28
2.3.9 Partition Integrity Entry...
2.3 Part 4 - File System ..31

2.3.10 Allocation Descriptors..
2.3.1 Descriptor Tag...31
2.3.11 Allocation Extent2 File Set Descriptor ...31
2.3.12 Pathname3 Partition Header Descriptor..34
2.4 Part 5 - Record Structure ..

2.3.4 File Identifier Descriptor ...35
3. System Dependent Requirements..

2.3.5 ICB TAG..36
3.1 Part 1 - General ..

2.3.6 File Entry ...38
3.1.1 Timestamp ..
2.3.7 Unallocated Space Entry..39
3.2 Part 3 - Volume Structure ...

2.3.8 Space Bitmap Descriptor ...40
3.2.1 Logical Volume Header Descriptor..
2.3.9 Partition Integrity Entry...40
3.3 Part 4 - File System ..
2.3.10 Allocation Descriptors ...41
32.3.1 File Identifier1 Allocation Extent Descriptor ..42
3.3.2 ICB Tag ..
2.3.12 Pathname...42
3.3.3 File Entry ..
2.3.13 Non-Allocatable Space List ... 42
3.3.4 Extended Attributes ...

2.4 Part 5 - Record Structure ...43

43. USER INTERFACESYSTEM DEPENDENT REQUIREMENTS..................... 44

43.1 Part 31 - Volume StructureGeneral..44

4.2 Part 4 - File System...

3.1.1 Timestamp..44
4.2.1 ICB Tag ..

3.2 Part 3 - Volume Structure ..45
43.2.2 File Identifier1 Logical Volume Header Descriptor ..45
5. Informative ..

3.3 Part 4 - File System...46

iii

53.3.1 File Identifier Descriptor Lengths...46
5.2 Using Implementation Use Areas..

3.3.2 ICB Tag..47
5.2.1 Entity Identifiers..
3.3.3 File Entry ..49
5.2.2 Orphan Space..
3.3.4 Extended Attributes ...54
5.3 Boot Descriptor ..

4. User Interface Requirements... 67

5.4 TECHNICAL CONTACTS ..

4.1 Part 3 - Volume Structure ..67

6. Appendices..

4.2 PART 4 - FILE SYSTEM ..67

6.1 UDF Entity Identifier Definitions ...
4.2.1 ICB Tag ..67

64.2 UDF Entity.2 File Identifier ValuesDescriptor ..68
6.3 Operating System Identifiers ..

5. Informative .. 76

6.4 OSTA COMPRESSED UNICODE ALGORITHM...

5.1 Descriptor Lengths..76

6.5 CRC Calculation...

5.2 Using Implementation Use Areas ...76

6.6 Algorithm for Strategy Type 4096..

5.2.1 Entity Identifiers ..76
6.7 Identifier Translation Algorithms..

5.2.2 Orphan Space...76
6.7.1 DOS Algorithm ...
5.3 Boot Descriptor ..77

6.7.2 OS/2 , Macintosh and UNIX Algorithm...
5.4 Technical Contacts ...77

6.8 Extended Attribute Checksum Algorithm..

6. Appendices... 78

iv

6.9 REQUIREMENTS FOR DVD-ROM ...

6.1 UDF Entity Identifier Definitions ...78

6.9.1 Constraints imposed by UDF for DVD-Video ...
6.2 UDF Entity Identifier Values..79

6.9.2 How to read a UDF disc ...
6.3 Operating System Identifiers ..80

6.9.3 Obtaining DVD Documents ...
6.4 OSTA Compressed Unicode Algorithm ..82

6.10 UDF Media Format Revision History...

6.5 CRC Calculation...84

6.11 Developer Registration Form..

6.6 Algorithm for Strategy Type 4096.. 86

6.7 Identifier Translation Algorithms ..87
6.7.1 DOS Algorithm ...87
6.7.2 OS/2, Macintosh,Windows 95, Windows NT and UNIX Algorithm..91

6.8 Extended Attribute Checksum Algorithm.. 96

6.9 Requirements for DVD-ROM...97
6.9.1 Constraints imposed by UDF for DVD-Video ..97
6.9.2 How to read a UDF disc ..98
6.9.3 Obtaining DVD Documents... 100

6.10 Recommendations for CD Media.. 101
6.10.1 Use of UDF on CD-R media .. 101
6.10.2 Use of UDF on CD-RW media .. 103
6.10.3 Multisession and Mixed Mode ... 106

6.11 UDF Media Format Revision History... 109

6.12 Developer Registration Form.. 110

v

This page left intentionally blank.

1. Introduction
The OSTA Universal Disk Format (UDF™) specification defines a subset of the standard
ISO/IEC 13346. The primary goal of the OSTA UDF is to maximize data interchange
and minimize the cost and complexity of implementing ISO/IEC 13346.

To accomplish this task this document defines a Domain. A domain defines rules and
restrictions on the use of ISO/IEC 13346. The domain defined in this specification is
known as the “OSTA UDF Compliant” domain.

This document attempts to answer the following questions for the structures of ISO/IEC
13346 on a per operating system basis:

Given some ISO/IEC 13346 structure X, for each field in structure X answer the
following questions for a given operating system:

1) When reading this field: If the operating system supports the data in
this field then what should it map to in the operating system?

2) When reading this field: If the operating system supports the data in
this field with certain limitations then how should the field be interpreted
under this operating system?

3) When reading this field: If the operating system does NOT support the
data in this field then how should the field be interpreted under this
operating system?

4) When writing this field: If the operating system supports the data for
this field then what should it map from in the operating system?

5) When writing this field: If the operating system does NOT support the
data for this field then to what value should the field be set?

For some structures of ISO/IEC 13346 the answers to the above questions were self
explanatory and therefore those structures are not included in this document.

In some cases additional information is provided for each structure to help clarify the
standard.

This document should help make the task of implementing the ISO/IEC 13346 standard
easier.

To be informed of changes to this document please fill out and return the OSTA UDF
Developers Registration Form located in appendix 6.106.11.

OSTA Universal Disk Format Revision 1.022

1.1 Document Layout
This document presents information on the treatment of structures defined under standard
ISO/IEC 13346. The following areas are covered
This document is separated into the following 4 basic sections:

• Basic Restrictions and Requirements - defines the restrictions and
requirements which are operating system independent.

• System Dependent Requirements - defines the restrictions and requirements
which are operating system dependent.

• User Interface Requirements - defines the restrictions and requirements which
are related to the user interface.

• Informative Annex - Additional useful information.

This document presents information on the treatment of structures defined under standard
ISO/IEC 13346. The following areas are covered :

!!!! Interpretation of a structure/field upon reading from media.

"""" Contents of a structure/field upon writing to media. Unless specified otherwise
writing refers only to creating a new structure on the media. When it applies to
updating an existing structure on the media it will be specifically noted as such.

The fields of each structure are listed first, followed by a description of each field with
respect to the categories listed above. In certain cases, one or more fields of a structure
are not described if the semantics associated with the field are obvious.

A word on terminology: in common with ISO/IEC 13346, this document will use shall to
indicate a mandatory action or requirement, may to indicate an optional action or
requirement, and should to indicate a preferred but still optional, action or requirement.

The standard ISO/IEC 13346 is commonly referred to as the NSR standard where NSR
stands for “Non-Sequential Recording.” In this document we sometimes use the term
NSR to refer to ISO/IEC 13346.

Also, special comments associated with fields and/or structures are prefaced by the
notification: "NOTE:"

OSTA Universal Disk Format Revision 1.023

1.2 Compliance
This document requires conformance to parts 1, 2, 3 and 4 of ISO/IEC 13346.
Compliance to part 5 of ISO/IEC 13346 is not supported by this document. Part 5 may
be supported in a later revision of this document.

NOTE: Due to the nature of CD media, Partitions may contain volume structures. This
violates ISO 13346 (3/8.5). Efforts are under way to revise ISO 13346 to allow
volume structures within write-once partitions.

For an implementation to claim compliance to this document the implementation shall
meet all the requirements (indicated by the word shall) specified in this document.

The following are a few points of clarification in regards to compliance:

• Multi-Volume support is optional. An implementation can claim compliance
and only support single volumes.

• Multi-Partition support is optional. An implementation can claim compliance
without supporting the special multi-partition case on a single volume defined
in this specification.

• Media support. An implementation can claim compliance and support
Rewritable and Overwritablea single media only,type or WORM media only,
or bothany combination. All implementations should be able to support Read-
Only mediaread any media that is physically accessable.

• File Name Translation - Any time an implementation has the need to
transform a filename to meet operating system restrictions it shall use the
algorithms specified in this document.

• Extended Attributes - All compliant implementations shall preserve existing
extended attributes encountered on the media. Implementations shall create
and maintain the extended attributes for the operating systems they support.
For example, an implementation that supports Macintosh shall preserve any
OS/2 extended attributes encountered on the media. An implementation that
supports Macintosh shall also create and maintain all Macintosh extended
attributes specified in this document.

The full definition of compliance to this document is defined in a separate OSTA
document.

1.3 General References
1.3.1 References
ISO 9660:1988 Information Processing - Volume and File Structure of CD-ROM for Information

Interchange

IEC 908:1987 Compact disc digital audio system

ISO/IEC 10149:1993 Information technology - Data Interchange on read-only 120mm optical data
discs (CD-ROM based on the Philips/Sony “Yellow Book”)

OSTA Universal Disk Format Revision 1.024

Orange Book part-II Recordable Compact Disc System Part-II, N.V. Philips and Sony Corporation

Orange Book part-III Recordable Compact Disc System Part-III, N.V. Philips and Sony Corporation

ISO/IEC 13346:1995 Volume and file structure of write-once and rewritable media using non-
sequential recording for information interchange. References enclosed in [] in
this document are references to ISO 13346. The references are in the form
[x/a.b.c], where x is the section number and a.b.c is the paragraph or figure
number.

ECMA 167 European Computer Manufactures Association (ECMA) standard number 167.
Revision 2 of this standard is equivalent to ISO/IEC 13346:1995, and is available
from http://www.ecma.ch.

1.3.2 Definitions
Audio session Audio session contains one or more audio tracks, and no data track.

Audio track Audio tracks are tracks that are designated to contain audio sectors specified in
the ISO/IEC 908.

CD-R CD-Recordable. A write once CD defined in Orange Book, part-II.

CD-RW CD-Rewritable. An overwritable CD defined in Orange Book, part-III.

Clean File System The file system on the media conforms to this specification.

Data track Data tracks are tracks that are designated to contain data sectors specified in the
ISO/IEC 10149.

Dirty File System A file system that is not a clean file system.

Fixed Packet An incremental recording method in which all packets in a given track are of a
length specified in the Track Descriptor Block. Addresses presented to a CD
drive are translated according to the Method 2 addressing specified in Orange
Book parts-II and -III.

ICB A control node in ISO 13346.

Logical Block Address An address relative to the beginning of a partition, as defined in ISO 13346.

Media Block Address The address of a sector as it appears on the medium, before any mapping
performed by the device.

Packet A recordable unit, which is an integer number of sectors.

Packet Size The number of user data sectors in a Packet.

Physical Address An address used when accessing the medium, as it would appear at the interface
to the device.

Random Access File System A file system for randomly writable media, either write once or
rewritable

Sequential File System A file system for sequentially written media (e.g. CD-R)

Session The tracks of a volume shall be organized into one or more sessions as specified
by the Orange Book part-II. A session shall be a sequence of one or more tracks,
the track numbers of which form a contiguous ascending sequence.

Track The sectors of a volume shall be organized into one or more tracks. A track shall
be a sequence of sectors, the sector numbers of which form a contiguous
ascending sequence. No sector shall belong to more than one track.

OSTA Universal Disk Format Revision 1.025

Note: There may be gaps between tracks; that is, the last sector of a track need
not be adjacent to the first sector of the next track.

UDF OSTA Universal Disk Format

Variable Packet An incremental recording method in which each packet in a given track is of a
host determined length. Addresses presented to a CD drive are as specified in
Method 1 addressing in Orange Book parts II and III.

VAT ICB A File Entry ICB that describes a file containing a Virtual Allocation Table.

Virtual Address An address described by a Virtual Allocation Table entry.

VAT The Virtual Allocation Table (VAT) provides a Logical Block Address for each
Virtual Address. The Virtual Allocation Table is used with sequential write once
media.

1.3.3 Terms
May Indicates an action or feature that is optional.

Optional Describes a feature that may or may not be implemented. If implemented, the
feature shall be implemented as described.

Shall Indicates an action or feature that is mandatory and must be implemented to
claim compliance to this standard.

Should Indicates an action or feature that is optional, but its implementation is strongly
recommended.

Reserved A reserved field is reserved for future use and shall be set to zero. A reserved
value is reserved for future use and shall not be used.

OSTA Universal Disk Format Revision 1.026

2. Basic Restrictions & Requirements

The following table summarizes several of the basic restrictions and requirements defined
in this specification. These restrictions & requirements as well as additional ones are
described in detail in the following sections of this specification.

Item Restrictions & Requirements
Logical Sector Size The Logical Sector Size for a specific volume shall be the

same as the physical sector size of the specific volume.
Logical Block Size The Logical Block Size for a Logical Volume shall be set to

the logical sector size of the volume or volume set on which
the specific logical volume resides.

Volume Sets All media within the same Volume Set shall have the same
physical sector size. Rewritable/Overwritable media and
WORM media shall not be mixed in/ be present in the same
volume set.

First 32K of Volume Space The first 32768 bytes of the Volume space shall not be used
for the recording of NSRISO 13346 structures. This area
shall not be referenced by the Unallocated Space Descriptor
or any other NSRISO 13346 descriptor. This is intended for
use by the native operating system.

Volume Recognition Sequence The Volume Recognition Sequence as described in part 2 of
ISO/IEC 13346 shall be recorded.

Timestamp All timestamps shall be recorded in local time. Time zones
shall be recorded on operating systems that support the
concept of a time zone.

Entity Identifiers Entity Identifiers shall be recorded in accordance with this
document. Unless otherwise specified in this specification
the Entity Identifiers shall contain a value that uniquely
identifies the implementation.

Descriptor CRCs CRCs shall be supported and calculated for all Descriptors,
except for the Space Bitmap Descriptor.

File Name Length Maximum of 255 bytes
Maximum Pathsize Maximum of 1023 bytes
Extent Length Maximum Extent Length shall be 230 - Logical Block Size

Primary Volume Descriptor There shall be exactly one prevailing Primary Volume
Descriptor recorded per volume.

Anchor Volume Descriptor Pointer Shall only be recorded in at least 2 of the following 3
locations: 256, N-256, or N. W, where N is the last
addressable sector of a volume.

Partition Descriptor A Partition Access Type of Read-Only, Rewritable,
Overwritable and WORM shall be supported.
There shall be exactly one prevailing Partition Descriptor
recorded per volume, with one exception. For Volume Sets
that consist of single volume, the volume may contain 2
Partitions with 2 prevailing Partition Descriptors only if one
has an access type of read only and the other has an access
type of Rewritable or Overwritable. The Logical Volume
for this volume would consist of the contents of both
partitions.

Logical Volume Descriptor There shall be exactly one prevailing Logical Volume

OSTA Universal Disk Format Revision 1.027

Descriptor recorded per Volume Set. The Partition Maps
field shall contain only Type 1 Partition Maps.

The LogicalVolumeIdentifier field shall not be null and
should contain a identifier that aids in the identification of
the logical volume. Specifically, software generating
volumes conforming to this specification shall not set this
field to a fixed or trivial value. Duplicate disks which are
intended to be identical may contain the same value in this
field. This field is extremely important in logical volume
identification when multiple media are present within a
jukebox. This name is typically what is displayed to the
user.

Logical Volume Integrity Descriptor Shall be recorded.
Unallocated Space Descriptor A single prevailing Unallocated Space Descriptor shall be

recorded per volume.
File Set Descriptor There shall be exactly one File Set Descriptor recorded per

Logical Volume on Rewritable/Overwritable media. For
WORM media multiple File Set Descriptors may be
recorded based upon certain restrictions defined in this
document.

ICB Tag Only strategy types 4 or 4096 shall be recorded.
File Identifier Descriptor The total length of a File Identifier Descriptor shall not

exceed the size of one Logical Block.
File Entry The total length of a File Entry shall not exceed the size of

one Logical Block.
Allocation Descriptors Only Short and Long Allocation Descriptors shall be

recorded.
Allocation Extent Descriptors The length of any single Allocation Extent Descriptor shall

not exceed the Logical Block Size.
Unallocated Space Entry The total length of an Unallocated Space Entry shall not

exceed the size of one Logical Block.
Space Bitmap Descriptor CRC not required.
Partition Integrity Entry Shall not be recorded.
Volume Descriptor Sequence Extent Both the main and reserve volume descriptor sequence

extents shall each have a minimum length of 16 logical
sectors.

Record Structure Record structure files, as defined in part 5 of ISO/IEC
13346, shall not be created.

OSTA Universal Disk Format Revision 1.028

2.1 Part 1 - General
2.1.1 Character Sets

The character set used by UDF for the structures defined in this document is the
CS0 character set. The OSTA CS0 character set is defined as follows:

OSTA CS0 shall consist of the d-characters specified in the Unicode 1.1 standard
(excluding #FEFF and FFFE) stored in the OSTA Compressed Unicode format
which is defined as follows:

OSTA Compressed Unicode format
RBP Length Name Contents

0 1 Compression ID Uint8
1 ?? Compressed Bit Stream byte

The CompressionID shall identify the compression algorithm used to compress
the CompressedBitStream field. The following algorithms are currently
supported:

Compression Algorithm
Value Description
0 - 7 Reserved

8 Value indicates there are 8 bits per character
in the CompressedBitStream.

9-15 Reserved
16 Value indicates there are 16 bits per

character in the CompressedBitStream.
17-255 Reserved

For a CompressionID of 8 or 16, the value of the CompressionID shall specify
the number of BitsPerCharacter for the d-characters defined in the
CharacterBitStream field. Each sequence of CompressionID bits in the
CharacterBitStream field shall represent an OSTA Compressed Unicode d-
character. The bits of the character being encoded shall be added to the
CharacterBitStream from most- to least-significant-bit. The bits shall be added to
the CharacterBitStream starting from the most-significant-bit of the current byte
being encoded into.
NOTE: This encoding causes characters written with a CompressionID of 16 to

be effectively written in big endian format.

The value of the OSTA Compressed Unicode d-character interpreted as a Uint16
defines the value of the corresponding d-character in the Unicode 1.1 standard.
Refer to appendix on OSTA Compressed Unicode for sample C source code to
convert between OSTA Compressed Unicode and standard Unicode 1.1.

The Unicode byte-order marks, #FEFF and #FFFE, shall not be used.

OSTA Universal Disk Format Revision 1.029

2.1.2 OSTA CS0 Charspec
Charspec

struct Charspec {
Uint8 CharacterSetType;
byte CharacterSetInfo[63];

}

The CharacterSetType field shall have the value of 0 to indicate the CS0 coded
character set.

The CharacterSetInfo field shall contain the following byte values with the
remainder of the field set to a value of 0.

#4F, #53, #54, #41, #20, #43, #6F, #6D, #70, #72, #65, #73, #73, #65,
#64, #20, #55, #6E, #69, #63, #6F, #64, #65

The above byte values represent the following ASCII string:
“OSTA Compressed Unicode”

2.1.3 Dstrings

The ISO 13346 standard, as well as this document, has normally defined byte positions
relative to 0. In section 7.2.12 of ISO 13346, dstrings are defined in terms of being
relative to 1. Since this offers an opportunity for confusion, the following shows what
the definition would be if described relative to 0.

7.2.12 Fixed-length character fields
A dstring of length n is a field of n bytes where d-characters (1/7.2) are recorded. The number of
bytes used to record the characters shall be recorded as a Uint8 (1/7.1.1) in byte n-1, where n is the
length of the field. The characters shall be recorded starting with the first byte of the field, and any
remaining byte positions after the characters up until byte n-2 inclusive shall be set to #00.

If the number of d-characters to be encoded is zero, the length of the dstring shall be zero.
NOTE: The length of a dstring includes the compression code byte(2.1.1) except for the
case of a zero length string. A zero length string shall be recorded by setting the entire
dstring field to all zeros.

OSTA Universal Disk Format Revision 1.0210

2.1.4 Timestamp

struct timestamp { /* ISO 13346 1/7.3 */
Uint16 TypeAndTimezone;
Uint16 Year;
Uint8 Month;
Uint8 Day;
Uint8 Hour;
Uint8 Minute;
Uint8 Second;
Uint8 Centiseconds;
Uint8 HundredsofMicroseconds;
Uint8 Microseconds;

}

2.1.4.1 Uint16 TypeAndTimezone;
For the following descriptions Type refers to the most significant 4 bits of this
field, and TimeZone refers to the least significant 12 bits of this field.

! The time within the structure shall be interpreted as Local Time since Type
shall be equal to ONE for OSTA UDF compliant media.

" Type shall be set to ONE to indicate Local Time.

! Shall be interpreted as the specifying the time zone for the location when
this field was last modified. If this field contains -2047 then the time zone
has not been specified.

" For operating systems that support the concept of a time zone, the offset of
the time zone (in 1 minute increments), from Coordinated Universal Time,
shall be inserted in this field. Otherwise the time zone portion of this field
shall be set to -2047.

Note: Time zones West of Coordinated Universal Time have negative offsets.
For example, Eastern Standard Time is -300 minutes; Eastern Daylight
Time is -240 minutes.

2.1.5 Entity Identifier
struct EntityID { /* ISO 13346 1/7.4 */

Uint8 Flags;
char Identifier[23];
char IdentifierSuffix[8];

}

OSTA Universal Disk Format Revision 1.0211

UDF classifies Entity Identifiers into 3 separate types as follows:

• Domain Entity Identifiers
• UDF Entity Identifiers
• Implementation Entity Identifiers

The following sections describes the format and use of Entity Identifiers based
upon the different types mentioned above.

2.1.5.1 Uint8 Flags
! Self explanatory.

" Shall be set to ZERO.

2.1.5.2 char Identifier
Unless stated otherwise in this document this field shall be set to an identifier that
uniquely identifies the implementation. This methodology will allow for
identification of the implementation responsible for creating structures recorded
on media interchanged between different implementations.

If an implementation updates existing structures on the media written by other
implementations the updating implementation shall set the Identifier field to a
value that uniquely identifies the updating implementation.

The following table summarizes the Entity Identifier fields defined in the
NSRISO 13346 standard and this document and shows to what values they shall
be set.

Entity Identifiers
Descriptor Field ID Value Suffix Type

Primary Volume
Descriptor

Implementation ID “*Developer ID” Implementation
Identifier Suffix

Implementation Use
Volume Descriptor

Implementation ID “*Developer ID” Implementation
Identifier Suffix

Implementation Use
Volume Descriptor

Implementation ID “*UDF LV Info” UDF Identifier Suffix

Partition Descriptor Implementation ID “*Developer ID” Implementation
Identifier Suffix

Logical Volume
Descriptor

Implementation ID “*Developer ID” Implementation
Identifier Suffix

Logical Volume
Descriptor

Domain ID "*OSTA UDF
Compliant"

DOMAIN Identifier
Suffix

File Set Descriptor Domain ID "*OSTA UDF
Compliant"

DOMAIN Identifier
Suffix

File Identifier
Descriptor

Implementation ID “*Developer ID” Implementation
Identifier Suffix
(optional)

OSTA Universal Disk Format Revision 1.0212

File Entry Implementation ID “*Developer ID” Implementation
Identifier Suffix

UDF Extended
Attribute

Implementation ID See Appendix UDF Identifier Suffix

Non-UDF Extended
Attribute

Implementation ID “*Developer ID” Implementation
Identifier Suffix

Device Specification
Extended Attribute

Implementation ID “*Developer ID” Implementation
Identifier Suffix

Logical Volume
Integrity Descriptor

Implementation ID “*Developer ID” Implementation
Identifier Suffix

Partition Integrity
Entry

Implementation ID N/A N/A

Virtual Partition Map Partition Type
Identifier

“*UDF Virtual
Partition”

UDF Identifier Suffix

Sparable Partition
Map

Partition Type
Identifier

“*UDF Sparable
Partition”

UDF Identifier Suffix

Virtual Allocation
Table

Entity ID “*UDF Virtual
Alloc Tbl”

UDF Identifier Suffix

Sparing Table Sparing Identifier “*UDF Sparing
Table”

UDF Identifier Suffix

NOTE: The value of the Entity Identifier field is interpreted as a sequence
of bytes, and not as a dstring specified in CS0. For ease of use the values
used by UDF for this field are specified in terms of ASCII character
strings. The actual sequence of bytes used for the Entity Identifiers
defined by UDF are specified in the appendix.

In the ID Value column in the above table “*Developer ID” refers to a Entity Identifier
that uniquely identifies the current implementation. The value specified should be used
when a new descriptor is created. Also, the value specified should be used for an existing
descriptor when anything within the scope of the specified EntityID field is modified.

NOTE: The value chosen for a “*Developer ID” should contain enough
information to identify the company and product name for an implementation.
For example, a company called XYZ with a UDF product called DataOne might
choose “*XYZ DataOne” as their developer ID. Also in the suffix of their
developer ID they may choose to record the current version number of their
DataOne product. This information is extremely helpful when trying to
determine which implementation wrote a bad structure on a piece of media when
multiple products from different companies have been recording on the media.

The Suffix Type column in the above table defines the format of the suffix to be used with
the corresponding Entity Identifier. These different suffix types are defined in the
following paragraphs.

NOTE: All Identifiers defined in this document (appendix 6.1) shall be registered
by OSTA as UDF Identifiers.

OSTA Universal Disk Format Revision 1.0213

2.1.5.3 IdentifierSuffix
The format of the IdentifierSuffix field is dependent on the type of the Identifier.

In regard to OSTA Domain Entity Identifiers specified in this document
(appendix 6.1) the IdentifierSuffix field shall be constructed as follows:

Domain IdentifierSuffix field format
RBP Length Name Contents

0 2 UDF Revision Uint16 (=
#01020150)

2 1 Domain Flags Uint8
3 5 Reserved bytes (= #00)

The UDFRevision field shall contain #01020150 to indicate revision 1.0250 of
this document. This field will allow an implementation to detect changes made in
newer revisions of this document. The OSTA Domain Identifiers are only used in
the Logical Volume Descriptor and the File Set Descriptor. The DomainFlags
field defines the following bit flags:

Domain Flags
Bit Description

0 Hard Write-Protect
1 Soft Write-Protect

2-7 Reserved

The SoftWriteProtect flag is a user settable flag that indicates that the volume or
file system structures within the scope of the descriptor in which it resides are
write protected. A SoftWriteProtect flag value of ONE shall indicate user write
protected structures. This flag may be set or reset by the user. The
HardWriteProtect flag is an implementation settable flag that indicates that the
scope of the descriptor in which it resides is permanently write protected. A
HardWriteProtect flag value of ONE shall indicate a permanently write protected
structure. Once set this flag shall not be reset. The HardWriteProtect flag
overrides the SoftWriteProtect flag. These flags are only used in the Logical
Volume Descriptor and the File Set Descriptor. The flags in the Logical Volume
descriptor have precedence over the flags in the File Set Descriptors.

Implementation use Entity Identifiers defined by UDF (appendix 6.16.1) the
IdentifierSuffix field shall be constructed as follows:

UDF IdentifierSuffix
RBP Length Name Contents

0 2 UDF Revision Uint16 (=
#01020150)

2 1 OS Class Uint8
3 1 OS Identifier Uint8

OSTA Universal Disk Format Revision 1.0214

4 4 Reserved bytes (= #00)

The contents of the OS Class and OS Identifier fields are described in the
Appendix on Operating System Identifiers.

For implementation use Entity Identifiers not defined by UDF the IdentifierSuffix
field shall be constructed as follows:

Implementation IdentifierSuffix
RBP Length Name Contents

0 1 OS Class Uint8
1 1 OS Identifier Uint8
2 6 Implementation Use Area bytes

NOTE: It is important to understand the intended use and importance of the OS Class and
OS Identifier fields. The main purpose of these fields is to aid in debugging when
problems are found on a UDF volume. The fields also provide useful information which
could be provided to the end user. When set correctly these two fields provide an
implementation with information such as the following:

• Identify under which operating system a particular structure was last
modified.

• Identify under which operating system a specific file or directory was last
modified.

• If a developer supports multiple operating systems with their implementation,
it helps to determine under which operating system a problem may have
occurred.

OSTA Universal Disk Format Revision 1.0215

2.2 Part 3 - Volume Structure
2.2.1 Descriptor Tag

struct tag { /* ISO 13346 3/7.2 */
Uint16 TagIdentifier;
Uint16 DescriptorVersion;
Uint8 TagChecksum;
byte Reserved;
Uint16 TagSerialNumber;
Uint16 DescriptorCRC;
Uint16 DescriptorCRCLength;
Uint32 TagLocation;

}

2.2.1.1 Uint16 TagSerialNumber
! Ignored. Intended for disaster recovery.

" Reset to a (possibly non-unique) value at volume initialization.

The TagSerialNumber shall be set to a value that differs from ones previously
recorded, upon volume re-initialization. It is suggested that: TagSerialNumber =
((TagSerialNumber of the value in the prevailing Primary Volume Descriptor) + 1
be used).

2.2.1.2 Uint16 DescriptorCRCLength
CRCs shall be supported and calculated for each descriptor. The value of this
field shall be set to the s(Size of the Descriptor) - (Length of Descriptor Tag).
When reading a descriptor the CRC should be validated.

2.2.2 Primary Volume Descriptor

struct PrimaryVolumeDescriptor { /* ISO 13346 3/10.1 */
struct tag DescriptorTag;
Uint32 VolumeDescriptorSequenceNumber;
Uint32 PrimaryVolumeDescriptorNumber;
dstring VolumeIdentifier[32];
Uint16 VolumeSequenceNumber;
Uint16 MaximumVolumeSequenceNumber;
Uint16 InterchangeLevel;
Uint16 MaximumInterchangeLevel;
Uint32 CharacterSetList;
Uint32 MaximumCharacterSetList;
dstring VolumeSetIdentifier[128];
struct charspec DescriptorCharacterSet;
struct charspec ExplanatoryCharacterSet;

OSTA Universal Disk Format Revision 1.0216

struct extent_ad VolumeAbstract;
struct extent_ad VolumeCopyrightNotice;
struct EntityID ApplicationIdentifier;
struct timestamp RecordingDateandTime;
struct EntityID ImplementationIdentifier;
byte ImplementationUse[64];
Uint32 PredecessorVolumeDescriptorSequenceLocation;
Uint16 Flags;
byte Reserved[22];

}

2.2.2.1 Uint16 InterchangeLevel
! Interpreted as specifying the current interchange level (as specified in

ISO/IEC 13346 3/11), of the contents of the associated volume and the
restrictions implied by the specified level.

" If this volume is part of a multi-volume Volume Set then the level shall be
set to 3, otherwise the level shall be set to 2.

ISO 13346 requires an implementation to enforce the restrictions associated with
the specified current Interchange Level. The implementation may change the
value of this field as long as it does not exceed the value of the Maximum
Interchange Level field.

2.2.2.2 Uint16 MaximumInterchangeLevel
! Interpreted as specifying the maximum interchange level (as specified in

ISO/IEC 13346 3/11), of the contents of the associated volume.

" This field shall be set to level 3 (No Restrictions Apply), unless
specifically given a different value by the user.

NOTE: This field is used to determine the intent of the originator of the volume.
If this field has been set to 2 then the originator does not wish the volume to be
included in a multi-volume set (interchange level 3). The receiver may override
this field and set it to a 3 but the implementation should give the receiver a strict
warning explaining the intent of the originator of the volume.

2.2.2.3 Uint32 CharacterSetList
! Interpreted as specifying the character set(s) in use by any of the structures

defined in Part 3 of ISO/IEC 13346 (3/10.1.9).

" Shall be set to indicate support for CS0 only as defined in 2.1.2.

OSTA Universal Disk Format Revision 1.0217

2.2.2.4 Uint32 MaximumCharacterSetList
! Interpreted as specifying the maximum supported character sets (as

specified in ISO/IEC 13346) which may be specified in the
CharacterSetList field.

" Shall be set to indicate support for CS0 only as defined in 2.1.2.

2.2.2.5 dstring VolumeSetIdentifier
! Interpreted as specifying the identifier for the volume set .

" The first 16 characters of this field should be set to a unique value. The
remainder of the field may be set to any allowed value. Specifically,
software generating volumes conforming to this specification shall not set
this field to a fixed or trivial value. Duplicate disks which are intended to
be identical may contain the same value in this field.

NOTE: The intended purpose of this is to guarantee Volume Sets with
unique identifiers. The first 8 characters of the unique part should come
from a CS0 hexadecimal representation of a 32-bit time value. The
remaining 8 characters are free for implementation use.

2.2.2.6 struct charspec DescriptorCharacterSet
! Interpreted as specifying the character sets allowed in the Volume

Identifier and Volume Set Identifier fields.

" Shall be set to indicate support for CS0 as defined in 2.1.2.

2.2.2.7 struct charspec ExplanatoryCharacterSet
! Interpreted as specifying the character sets used to interpret the contents of

the VolumeAbstract and VolumeCopyrightNotice extents.

" Shall be set to indicate support for CS0 as defined in 2.1.2.

2.2.2.8 struct EntityID ImplementationIdentifier;
;

For more information on the proper handling of this field see the section on Entity
Identifier2.1.5.

OSTA Universal Disk Format Revision 1.0218

2.2.3 Anchor Volume Descriptor Pointer

struct AnchorVolumeDescriptorPointer { /* ISO 13346 3/10.2 */
struct tag DescriptorTag;
struct extent_ad MainVolumeDescriptorSequenceExtent;
struct extent_ad ReserveVolumeDescriptorSequenceExtent;
byte Reserved[480];

}

NOTE: An AnchorVolumeDescriptorPointer structure shall only be recorded in
at least 2 of the following 3 locations on the media :

• Logical Sector 256.
• Logical Sector (N - 256).
• N

NOTE: Unclosed CD-R media may have an Anchor Volume Descriptor Pointer
recorded at only sector 512. Upon close, CD-R media will conform to the rules
above.

2.2.3.1 struct MainVolumeDescriptorSequenceExtent
The main VolumeDescriptorSequenceExtent shall have a minimum length of 16
logical sectors.

2.2.3.2 struct ReserveVolumeDescriptorSequenceExtent
The reserve VolumeDescriptorSequenceExtent shall have a minimum length of 16
logical sectors.

2.2.4 Logical Volume Descriptor

struct LogicalVolumeDescriptor { /* ISO 13346 3/10.6 */
struct tag DescriptorTag;
Uint32 VolumeDescriptorSequenceNumber;
struct charspec DescriptorCharacterSet;
dstring LogicalVolumeIdentifier[128];
Uint32 LogicalBlockSize,
struct EntityID DomainIdentifier;
byte LogicalVolumeContentsUse[16];
Uint32 MapTableLength;
Uint32 NumberofPartitionMaps;
struct EntityID ImplementationIdentifier;
byte ImplementationUse[128];
extent_ad IntegritySequenceExtent,
byte PartitionMaps[??];

OSTA Universal Disk Format Revision 1.0219

}

2.2.4.1 struct charspec DescriptorCharacterSet
! Interpreted as specifying the character set allowed in the

LogicalVolumeIdentifier field.

" Shall be set to indicate support for CS0 as defined in 2.1.2.

2.2.4.2 Uint32 LogicalBlockSize
! Interpreted as specifying the Logical Block Size for the logical volume

identified by this LogicalVolumeDescriptor.

" This field shall be set to the largest logical sector size encountered
amongst all the partitions on media that constitute the logical volume
identified by this LogicalVolumeDescriptor. Since UDF requires that all
Volumes within a VolumeSet have the same logical sector size, the
Logical Block Size will be the same as the logical sector size of the
Volume.

2.2.4.3 struct EntityID DomainIdentifier
! Interpreted as specifying a domain specifying rules on the use of, and

restrictions on, certain fields in the descriptors. If this field is all zero then
it is ignored, otherwise the Entity Identifier rules are followed. NOTE: If
the field does not contain “*OSTA UDF Compliant” then an
implementation may deny the user access to the logical volume.

" This field shall indicate that the contents of this logical volume conforms
to the domain defined in this document, therefore the DomainIdentifier
shall be set to:

"*OSTA UDF Compliant"

As described in the section on Entity Identifier the IdentifierSuffix field of
this EntityID shall contain the revision of this document for which the
contents of the Logical Volume is compatible. For more information on
the proper handling of this field see the section on Entity Identifier2.1.5.

NOTE: The IdentifierSuffix field of this EntityID contains
SoftWriteProtect and HardWriteProtect flags. Refer to 2.1.4.3.

2.2.4.4 struct EntityID ImplementationIdentifier;
;

For more information on the proper handling of this field see the section
on Entity Identifier.

OSTA Universal Disk Format Revision 1.0220

2.2.4.5 struct extent_ad IntegritySequenceExtent
A value in this field is required for the Logical Volume Integrity Descriptor. For
Rewriteable or Overwriteable media this shall be set to a minimum of 8K bytes.

WARNING: For WORM media this field should be set to an extent of some
substantial length. Once the WORM volume on which the Logical Volume
Integrity Descriptor resides is full a new volume must be added to the volume set
since the Logical Volume Integrity Descriptor must reside on the same volume as
the prevailing Logical Volume Descriptor.

2.2.4.6 byte PartitionMaps
For the purpose of interchange partition maps shall be limited to Partition Map
type 1, except type 2 maps as described in this document (2.2.8 and 2.2.9).

2.2.5 Unallocated Space Descriptor

struct UnallocatedSpaceDesc { /* ISO 13346 3/10.8 */
struct tag DescriptorTag;
Uint32 VolumeDescriptorSequenceNumber
Uint32 NumberofAllocationDescriptors;
extent_ad AllocationDescriptors[??];

}

This descriptor shall be recorded, even if there is no free volume space.

2.2.6 Logical Volume Integrity Descriptor

struct LogicalVolumeIntegrityDesc {/* ISO 13346 3/10.10 */
struct tag DescriptorTag,
Timestamp RecordingDateAndTime,
Uint32 IntegrityType,
struct extend_ad NextIntegrityExtent,
byte LogicalVolumeContentsUse[32],
Uint32 NumberOfPartitions,
Uint32 LengthOfImplementationUse,
Uint32 FreeSpaceTable[??],
Uint32 SizeTable[??],
byte ImplementationUse[??]

}

The Logical Volume Integrity Descriptor is a structure that shall be written any
time the contents of the associated Logical Volume is modified. Through the
contents of the Logical Volume Integrity Descriptor an implementation can easily
answer the following useful questions:

OSTA Universal Disk Format Revision 1.0221

1) Are the contents of the Logical Volume in a consistent state?

2) When was the last date and time that anything within the Logical
Volume was modified?

3) What is the total Logical Volume free space in logical blocks?

4) What is the total size of the Logical Volume in logical blocks?

5) What is the next available UniqueID for use within the Logical
Volume?

6) Has some other implementation modified the contents of the logical
volume since the last time that the original implementation which created
the logical volume accessed it.

2.2.6.1 byte LogicalVolumeContentsUse
See the section on Logical Volume Header Descriptor for information on the
contents of this field.

2.2.6.2 Uint32 FreeSpaceTable

Since most operating systems require that an implementation provide the true free
space of a Logical Volume at mount time it is important that these values be
maintained. The optional value of #FFFFFFFF, which indicates that the amount
of available free space is not known, shall not be used.

NOTE: The FreeSpaceTable is guaranteed to be correct only when the Logical
Volume Integrity Descriptor is closed.

2.2.6.3 Uint32 SizeTable

Since most operating systems require that an implementation provide the total
size of a Logical Volume at mount time it is important that these values be
maintained. The optional value of #FFFFFFFF, which indicates that the partition
size is not known, shall not be used.

2.2.6.4 byte ImplementationUse
The ImplementationUse area for the Logical Volume Integrity Descriptor shall be
structured as follows:

OSTA Universal Disk Format Revision 1.0222

ImplementationUse format
RBP Length Name Contents

0 32 ImplementationID EntityID
32 4 Number of Files Uint32
36 4 Number of Directories Uint32
40 2 Minimum UDF Read Revision Uint16
42 2 Minimum UDF Write Revision Uint16
44 2 Maximum UDF Write Revision Uint16
46 ?? Implementation Use byte

Implementation ID - The implementation identifier EntityID of the
implementation which last modified anything within the scope of this
EntityID. The scope of this EntityID is the Logical Volume Descriptor,
and the contents of the associated Logical Volume. This field allows an
implementation to identify which implementation last modified the
contents of a Logical Volume.

Number of Files - The current number of files in the associated Logical
Volume. This information is needed by the Macintosh OS. All
implementations shall maintain this information. NOTE: This value does
not include Extended Attributes as part of the file count.

Number of Directories - The current number of directories in the
associated Logical Volume. This information is needed by the Macintosh
OS. All implementations shall maintain this information.
NOTE: The root directory shall be included in the directory count.

Minimum UDF Read Revision - Shall indicate the minimum recommended
revision of the UDF specification that an implementation is required to
support to successfully be able to read all potential structures on the
media. This number shall be stored in binary coded decimal format, for
example #01020150 would indicate revision 1.0250 of the UDF
specification.

Minimum UDF Write Revision - Shall indicate the minimum revision of
the UDF specification that an implementation is required to support to
successfully be able to modify all structures on the media. This number
shall be stored in binary coded decimal format, for example #01020150
would indicate revision 1.0250 of the UDF specification.

Maximum UDF Write Revision - Shall indicate the maximum revision of
the UDF specification that an implementation which has modified the
media has supported. An implementation shall update this field only if it
has modified the media and the level of the UDF specification it supports
is higher than the current value of this field. This number shall be stored
in binary coded decimal format, for example #01020150 would indicate
revision 1.0250 of the UDF specification.

OSTA Universal Disk Format Revision 1.0223

Implementation Use - Contains implementation specific information
unique to the implementation identified by the Implementation ID.

2.2.7 Implemention Use Volume Descriptor
struct ImpUseVolumeDescriptor {

struct tag DescriptorTag;
Uint32 VolumeDescriptorSequenceNumber;
struct EntityID ImplementationIdentifier;
byte ImplementationUse[460];

}

This section defines an UDF Implementation Use Volume Descriptor. This
descriptor shall be recorded on every Volume of a Volume Set. The Volume may
also contain additional Implementation Use Volume Descriptors which are
implementation specific. The intended purpose of this descriptor is to aid in the
identification of a Volume within a Volume Set that belongs to a specific Logical
Volume.

NOTE: An implementation may still record an additional Implementation Use
Volume Descriptor in its own format on the media. The UDF Implementation
Use Volume Descriptor does not preclude an additional descriptor.

2.2.7.1 EntityID Implementation Identifier
This field shall specify “*UDF LV Info”.

2.2.7.2 bytes Implementation Use
The implementation use area shall contain the following structure:

struct LVInformation {
struct charspec LVICharset,
dstring LogicalVolumeIdentifier[128],
dstring LVInfo1[36],
dstring LVInfo2[36],
dstring LVInfo3[36],
struct EntityID ImplementionID,
bytes ImplementationUse[128];

}

2.2.7.2.1 charspec LVICharset
! Interpreted as specifying the character sets allowed in the

LogicalVolumeIdentifier and LVInfo fields.

" Shall be set to indicate support for CS0 only as defined in 2.1.2.

OSTA Universal Disk Format Revision 1.0224

.

2.2.7.2.2 dstring LogicalVolumeIdentifier
Identifies the Logical Volume referenced by this descriptor.

2.2.7.2.3 dstring LVInfo1
The fields LVInfo1, LVInfo2 and LVInfo3 should contain additional information
to aid in the identification of the media. For example the LVInfo fields could
contain information such as Owner Name, Organization Name, and Contact
Information.

2.2.7.2.4 struct EntityID ImplementionID
Refer to the section on Entity Identifier.

2.2.7.2.5 bytes ImplementationUse[128]
This area may be used by the implementation to store any additional
implementation specific information.

OSTA Universal Disk Format Revision 1.0225

2.2.8 Virtual Partition Map
This is an extension of ISO 13346 to expand its scope to include sequentially written
media (eg. CD-R). This extension is for a partition map entry to describe a virtual space.

The Logical Volume Descriptor contains a list of partitions that make up a given volume.
As the virtual partition cannot be described in the same manner as a physical partition, a
Type 2 partition map defined below shall be used.
If a Virtual Partition Map is recorded, then the Logical Volume Descriptor shall contain
at least two partition maps. One partition map, shall be recorded as a Type 1 partition
map. One partition map, shall be recorded as a Type 2 partition map. The format of this
Type 2 partition map shall be as specified in the following table.

Layout of Type 2 partition map for virtual partition
RBP Length Name Contents

0 1 Partition Map Type Uint8 = 2

1 1 Partition Map Length Uint8 = 64

2 2 Reserved #00 bytes

4 32 Partition Type Identifier EntityID

36 2 Volume Sequence Number Uint16

38 2 Partition Number Uint16

40 24 Reserved #00 bytes

• Partition Type Identifier:

• Flags = 0

• Identifier = *UDF Virtual Partition

• IdentifierSuffix is recorded as in section 2.1.5.3

• Volume Sequence Number = volume upon which the VAT and Partition is recorded

• Partition Number = an identification of a partition within the volume identified by the volume
sequence number

2.2.9 Sparable Partition Map
Certain disk/drive systems do not perform defect management (eg. CD-RW). To provide
an apparent defect-free space for these systems, a partition of type 2 is used. The
partition map defines the partition number, packet size (see section 1.3.2), and size and
locations of the sparing tables. This type 2 map is intended to replace the type 1 map
normally found on the media. This map identifies not only the partition number and the
volume sequence number, but also identifies the packet length and the sparing tables. A
Sparable Partition Map shall not be recorded on disk/drive systems that perform defect
management.

OSTA Universal Disk Format Revision 1.0226

Layout of Type 2 partition map for sparable partition
RBP Length Name Contents

0 1 Partition Map Type Uint8 = 2
1 1 Partition Map Length Uint8 = 64
2 2 Reserved #00 bytes
4 32 Partition Type Identifier EntityID
36 2 Volume Sequence Number Uint16
38 2 Partition Number Uint16
40 2 Packet Length Uint16 = 32
42 1 Number of Sparing Tables (=N_ST) Uint8
43 1 Reserved #00 byte
44 4 Size of each sparing table Uint32
48 4 * N_ST Locations of sparing tables Uint32
48 + 4 * N_ST 16 - 4 * N_ST Pad #00 bytes

• Partition Type Identifier:

• Flags = 0

• Identifier = *UDF Sparable Partition

• IdentifierSuffix is recorded as in section 2.1.5.3.

• Partition Number = the number of this partition. Shall identify a Partition Descriptor
associated with this partition.

• Packet Length = the number of user data blocks per fixed packet. Shall be set to 32.

• Number of Sparing Tables = the number of redundant tables recorded. This shall be a value
in the range of 1 to 4.

• Size of each sparing table = Length, in bytes, allocated for each sparing table.

• Locations of sparing tables = the start locations of each sparing table specified as a media
block address. Implementations should align the start of each sparing table with the
beginning of a packet. Implementations should record at least two sparing tables in physically
distant locations.

2.2.10 Virtual Allocation Table
The Virtual Allocation Table (VAT) is used on sequentially written media(eg. CD-R) to
give the appearance of randomly writable media to the system. The existence of this
partition is identified in the partition maps. The VAT shall only be recorded on
sequentially written media (eg. CD-R).

The VAT is a map that translates Virtual Addresses to logical addresses. It shall be
recorded as a file identified by a File Entry ICB (VAT ICB) which allows great flexibility
in building the table. The VAT ICB is the last sector recorded in any transaction. The
VAT itself may be recorded at any location.

The VAT shall be identified by a File Entry ICB with a file type of 0. This ICB shall be
the last valid data sector recorded. Error recovery schemes can find the last valid VAT
by finding ICBs with file type 0 and examining the contents for the EntityID at the end of
the table.

OSTA Universal Disk Format Revision 1.0227

This file, when small, can be embedded in the ICB that describes it. If it is larger, it can
be recorded in a sector or sectors preceding the ICB. The sectors do not have to be
contiguous, which allows writing only new parts of the table if desired. This allows
small incremental updates, even on disks with many directories. Each sector can hold
entries that represent up to 512 directories.
When the VAT is small (a small number of directories on the disk), the VAT is updated
by writing a new file ICB with the VAT embedded. When the VAT becomes too large to
fit in the ICB, writing a single sector with the VAT and a second sector with the ICB is
required. Beyond this point, more than one sector is required for the VAT. However, as
multiple extents are supported, updating the VAT may consist of writing only the sector
or sectors that need updating and writing the ICB with pointers to all of the pieces of the
VAT.

The Virtual Allocation Table is used to redirect requests for certain information to the
proper logical location. The indirection provided by this table provides the appearance of
direct overwrite capability. For example, the sector describing the root directory could be
referenced as virtual sector 1. A virtual sector is contained in a partition identified by a
virtual partition map entry. Over the course of updating the disk, the root directory may
change. When it changes, a new sector describing the root directory is written, and its
Logical Block Address is recorded as the Logical Block Address corresponding to virtual
sector 1. Nothing that references virtual sector 1 needs to change, as it still points to the
most current virtual sector 1 that exists, even though it exists at a new Logical Block
Address.

The use of virtual addressing allows any desired structure to become effectively
rewritable. The structure is rewritable when every pointer that references it does so only
by its Virtual Address. When a replacement structure is written, the virtual reference
does not need to change. The proper entry in the VAT is changed to reflect the new
Logical Block Address of the corresponding Virtual Address and all virtual references
then point to the new structure. All structures that require updating, such as directory
ICBs, shall be referenced by a Virtual Address. As each structure is updated, its
corresponding entry in the VAT ICB shall be updated.

The VAT shall be recorded as a sequence of Uint32 entries in a file. Each entry shall be
the offset, in sectors, into the physical partition in which the VAT is located. The first
entry shall be for the virtual partition sector 0, the second entry for virtual partition sector
1, etc. The Uint32 entries shall be followed by a EntityID and a Uint32 entry indicating
the location of the previous VAT ICB.

The entry for the previous VAT ICB allows for viewing the file system as it appeared in
an earlier state. If this field is #FFFFFFFF, then no such ICB is specified.

OSTA Universal Disk Format Revision 1.0228

Virtual Allocation Table structure
Offset Name Contents

0 LBA of virtual sector 0 Uint32

4 LBA of virtual sector 1 Uint32

8 LBA of virtual sector 2 Uint32

... ... Uint32

2048 LBA of virtual sector 512 Uint32

... ... Uint32

N * 4 Entity Identifier EntityID

N * 4 + 32 Previous VAT ICB location Uint32

An entry of #FFFFFFFF indicates that the virtual sector is currently unused.
The LBA specified is located in the partition identified by the partition map.
The number of entries in the table can be determined from the VAT file size in the ICB:

Number of entries (N) =
FileSize − 36

4
The EntityID shall contain:

• Flags = 0

• Identifier = *UDF Virtual Alloc Tbl

• IdentifierSuffix is recorded as in UDF 2.1.5.3

2.2.11 Sparing Table
Certain disk/drive systems do not perform defect management (eg. CD-RW). To provide
an apparent defect-free space for these systems. Certain media can only be written in
groups of sectors (“packets”), further complicating relocation: a whole packet must be
relocated rather than only the sectors being written. To address this issue a sparable
partition is identified in the partition map, which further identifies the location of the
sparing tables. The sparing table identifies relocated areas on the media. Sparing tables
are identified by a sparable partition map. Sparing tables shall not be recorded on
disk/drive systems that perform defect management.

Sparing Tables point to space allocated for sparing and contains a list of mappings of
defective sectors to their replacements. Separate copies of the sparing tables shall be
recorded in separate packets. All instances of the sparing table shall be kept up to date.

Partitions map logical space to physical space. Normally, this is a linear mapping where
an offset and a length is specified. A sparable partition is based on this mapping, where
the offset and length of a partition within physical space is specified by a partition
descriptor. The sparing table further specifies an exception list of logical to physical

OSTA Universal Disk Format Revision 1.0229

mappings. All mappings are one packet in length. The packet size is specified in the
sparable partition map.

Available sparing areas may be anywhere on the media, either inside or outside of a
partition. If located inside a partition, sparable space shall be marked as allocated and
shall be included in the Non-Allocatable Space List. The mapped locations should be
filled in at format time; the original locations are assigned dynamically as errors occur.
Each sparing table shall be structured as shown below.

Sparing Table layout
BP Length Name Contents

0 16 Descriptor Tag tag = 0

16 32 Sparing Identifier EntityID

48 2 Reallocation Table Length (=RT_L) Uint16

50 2 Reserved #00 bytes

52 4 Sequence Number Uint32

56 8*RT_L Map Entry Map Entries

This structure may be larger than a single sector if necessary.
• Descriptor Tag

Contains 0, indicating that the contents are not specified by ISO 13346.

• Sparing Identifier:

• Flags = 0

• Identifier = *UDF Sparing Table

• IdentifierSuffix is recorded as in UDF 2.1.5.3

• Reallocation Table Length
Indicates the number of entries in the Map Entry table.

• Sequence Number
Contains a number that shall be incremented each time the sparing table is updated.

• Map Entry
A map entry is described in the table below. Maps shall be sorted in ascending order by the
Original Location field.

Map Entry description
RBP Length Name Contents

0 4 Original Location Uint32

4 4 Mapped Location Uint32

• Original Location
Logical Block Address of the packet to be spared. The address of a packet is the address of
the first user data block of a packet. If this field is #FFFFFFFF, then this entry is available for
sparing. If this field is #FFFFFFF0, then the corresponding mapped location is marked as
defective and should not be used for mapping. Original Locations of #FFFFFFF1 through
#FFFFFFFE are reserved.

OSTA Universal Disk Format Revision 1.0230

• Mapped Location
Physical Block Address of active data. Requests to the original packet location are redirected
to the packet location identified here. All Mapped Location entries shall be valid, including
those entries for which the Original Location is #FFFFFFF0, #FFFFFFFF, or reserved. If the
mapped location overlaps a partition, that partition shall have that space marked as allocated
and that space shall be part of the Non-Allocatable Space list.

OSTA Universal Disk Format Revision 1.0231

2.3 Part 4 - File System
2.3.1 Descriptor Tag

struct tag { /* ISO 13346 4/7.2 */
Uint16 TagIdentifier;
Uint16 DescriptorVersion;
Uint8 TagChecksum;
byte Reserved;
Uint16 TagSerialNumber;
Uint16 DescriptorCRC;
Uint16 DescriptorCRCLength;
Uint32 TagLocation;

}

2.3.1.1 Uint16 TagSerialNumber
! Ignored.

" Reset to a non-unique value at volume initialization.

The TagSerialNumber shall be set to a value that differs from ones previously
recorded, upon volume re-initialization. The intended use of this field is for
disaster recovery. The TagSerialNumber for all descriptors in Part 4 should be
the same as the serial number used in the associated File Set Descriptor

2.3.1.2 Uint16 DescriptorCRCLength
CRCs shall be supported and calculated for each descriptor, unless otherwise
noted. The value of this field shall be set to the s: (Size of the Descriptor) -
(Length of Descriptor Tag). When reading a descriptor the CRC should be
validated.

2.3.2 File Set Descriptor

struct FileSetDescriptor { /* ISO 13346 4/14.1 */
struct tag DescriptorTag;
struct timestamp RecordingDateandTime;
Uint16 InterchangeLevel;
Uint16 MaximumInterchangeLevel;
Uint32 CharacterSetList;
Uint32 MaximumCharacterSetList;
Uint32 FileSetNumber;
Uint32 FileSetDescriptorNumber;
struct charspec LogicalVolumeIdentifierCharacterSet;
dstring LogicalVolumeIdentifier[128];
struct charspec FileSetCharacterSet;

OSTA Universal Disk Format Revision 1.0232

dstring FileSetIdentifer[32];
dstring CopyrightFileIdentifier[32];
dstring AbstractFileIdentifier[32];
struct long_ad RootDirectoryICB;
struct EntityID DomainIdentifier;
struct long_ad NextExtent;
byte Reserved[48];

}

On rewritable/overwritable media, only one FileSet descriptor shall be recorded.
On WORM media, multiple FileSet descriptors may be recorded.

The UDF provision for multiple File Sets is as follows:

• Multiple FileSets are only allowed on WORM media.
• The default FileSet shall be the one with the highest FileSetNumber.
• Only the default FileSet may be flagged as writable. All other FileSets

in the sequence shall be flagged HardWriteProtect (see EntityID
definition).

• No writable FileSet shall reference any metadata structures which are
referenced (directly or indirectly) by any other FileSet. Writable
FileSets may, however, reference the actual file data extents.

Within a FileSet on WORM, if all files and directories have been recorded with
ICB strategy type 4, then the DomainID of the corresponding FileSet Descriptor
shall be marked as HardWriteProtected.

The intended purpose of multiple FileSets on WORM is to support the ability to
have multiple archive images on the media. For example one FileSet could
represent a backup of a certain set of information made at a specific point in time.
The next FileSet could represent another backup of the same set of information
made at a later point in time.

2.3.2.1 Uint16 InterchangeLevel
! Interpreted as specifying the current interchange level (as specified in

ISO/IEC 13346 4/15), of the contents of the associated file set and the
restrictions implied by the specified level.

" Shall be set to a level of 3.

An implementation shall enforce the restrictions associated with the specified
current Interchange Level.

OSTA Universal Disk Format Revision 1.0233

2.3.2.2 Uint16 MaximumInterchangeLevel
! Interpreted as specifying the maximum interchange level of the contents of

the associated file set. This value restricts to what the current Interchange
Level field may be set.

" Shall be set to level 3.

2.3.2.3 Uint32 CharacterSetList
! Interpreted as specifying the character set(s) specified by any field, whose

contents are specified to be a charspec, of any descriptor specified in Part
4 of ISO/IEC 13346 and recorded in the file set described by this
descriptor.

" Shall be set to indicate support for CS0 only as defined in 2.1.2.

2.3.2.4 Uint32 MaximumCharacterSetList
! Interpreted as specifying the maximum supported character set in the

associated file set and the restrictions implied by the specified level.

" Shall be set to indicate support for CS0 only as defined in 2.1.2.

2.3.2.5 struct charspec LogicalVolumeIdentifierCharacterSet
! Interpreted as specifying the d-characters allowed in the Logical Volume

Identifier field.

" Shall be set to indicate support for CS0 as defined in 2.1.2.

2.3.2.6 struct charspec FileSetCharacterSet
! Interpreted as specifying the d-characters allowed in dstring fields defined

in Part 4 of ISO 13346 that are within the scope of the FileSetDescriptor.

" Shall be set to indicate support for CS0 as defined in 2.1.2.

2.3.2.7 struct EntityID DomainIdentifier
! Interpreted as specifying a domain specifying rules on the use of, and

restrictions on, certain fields in the descriptors. If this field is NULL then
it is ignored, otherwise the Entity Identifier rules are followed.

" This field shall indicate that the scope of this File Set Descriptor conforms
to the domain defined in this document, therefore the
ImplementationIdentifier shall be set to:

"*OSTA UDF Compliant"

OSTA Universal Disk Format Revision 1.0234

As described in the section on Entity Identifier the IdentifierSuffix field of
this EntityID shall contain the revision of this document for which the
contents of the Logical Volume is compatible. For more information on
the proper handling of this field see the section on Entity Identifier.

NOTE: The IdentifierSuffix field of this EntityID contains
SoftWriteProtect and HardWriteProtect flags.

2.3.3 Partition Header Descriptor

struct PartitionHeaderDescriptor { /* ISO 13346 4/14.3 */
struct short_ad UnallocatedSpaceTable;
struct short_ad UnallocatedSpaceBitmap;
struct short_ad PartitionIntegrityTable;
struct short_ad FreedSpaceTable;
struct short_ad FreedSpaceBitmap;
byte Reserved[88];

}

As a point of clarification the logical blocks represented as Unallocated are
blocks that are ready to be written without any preprocessing. In the case of
Rewritable media this would be a write without an erase pass. The logical blocks
represented as Freed are blocks that are not ready to be written, and require some
form of preprocessing. In the case of Rewritable media this would be a write
with an erase pass.

NOTE: The use of Space Tables or Space Bitmaps shall be consistent across a
Logical Volume. Space Tables and Space Bitmaps shall not both be used at the
same time within a Logical Volume.

2.3.3.1 struct short_ad PartitionIntegrityTable
Shall be set to all 0’szeros since PartitionIntegrityEntrys are not used.

OSTA Universal Disk Format Revision 1.0235

2.3.4 File Identifier Descriptor

struct FileIdentifierDescriptor { /* ISO 13346 4/14.4 */
struct tag DescriptorTag;
Uint16 FileVersionNumber;
Uint8 FileCharacteristics;
Uint8 LengthofFileIdentifier;
struct long_ad ICB;
Uint16 LengthofImplementationUse;
Uint16 LengthOfImplementationUse;
byte ImplementationUse[??];
char FileIdentifier[??];
byte Padding[??];

}

The File Identifier Descriptor shall be restricted to the length of one Logical
Block.

2.3.4.1 Uint16 FileVersionNumber
! There shall be only one version of a file as specified below with the value

being set to 1.

" Shall be set to 1.

2.3.4.2 Uint16 Lengthof ImplementationUse
! Shall specifiy the length of the ImplementationUse field.

" Shall specifiy the length of the ImplementationUse field. This field may
be ZERO, indicating that the ImplementationUse field has not been used.

2.3.4.3 byte ImplementationUse
! If the LengthofImplementationUse field is non ZERO then the first 32

bytes of this field shall be interpreted as specifying the implementation
identifier EntityID of the implementation which last modified the File
Identifier Descriptor.

" If the LengthofImplementationUse field is non ZERO then the first 32
bytes of this field shall be set to the implementation identifier EntityID of
the current implementation.

NOTE: For additional information on the proper handling of this field refer to
the section on Entity Identifier.

This field allows an implementation to identify which implementation last created
and/or modified a specific File Identifier Descriptor .

OSTA Universal Disk Format Revision 1.0236

2.3.5 ICB Tag
Tag

struct icbtag { /* ISO 13346 4/14.6 */
Uint32 PriorRecordedNumberofDirectEntries;
Uint16 StrategyType;
byte StrategyParameter[2];
Uint16 NumberofEntries;
byte Reserved;
Uint8 FileType;
Lb_addr ParentICBLocation;
Uint16 Flags;

}

2.3.5.1 Uint16 StrategyType
! The contents of this field specifies the ICB strategy type used. For the

purposes of read access an implementation shall support strategy types 4
and 4096.

" Shall be set to 4 or 4096.

NOTE: Strategy type 4096, which is defined in the appendix, is intended for
primary use on WORM media, but may also be used on rewritable and
overwritable media.

2.3.5.2 Uint8 FileType
As a point of clarification a value of 5 shall be used for a standard byte
addressable file, not 0.

2.3.5.3 ParentICBLocation
The use of this field by is optional.
NOTE: In ISO 13346-4/14.6.7 it states that “If this field contains 0, then no such
ICB is specified.” This is a flaw in the ISO standard in that an implementation
could store a directoryn ICB at logical block address 0. Therefore, if you decide
to use this field, do not store a directoryn ICB at logical block address 0.

2.3.5.4 Uint16 Flags
Bits 0-2: These bits specify the type of allocation descriptors used. Refer to the
section on Allocation Descriptors for the guidelines on choosing which type of
allocation descriptor to use.

OSTA Universal Disk Format Revision 1.0237

Bit 3 (Sorted):
! For OSTA UDF compliant media this bit shall indicate (ZERO) that

directories may be unsorted.

" Shall be set to ZERO.

Bit 4 (Non-relocatable):
! For OSTA UDF compliant media this bit may indicate (ONE) that the file

is non-relocatable. An implementation may reset this bit to ZERO to
indicate that the file is relocatable if the implementation can not assure
that the file will not be relocated.

" Should be set to ZERO.

Bit 9 (Contiguous):
! For OSTA UDF compliant media this bit may indicate (ONE) that the file

is contiguous. An implementation may reset this bit to ZERO to indicate
that the file may be non-contiguous if the implementation can not assure
that the file is contiguous.

" Should be set to ZERO.

Bit 11 (Transformed):
! For OSTA UDF compliant media this bit shall indicate (ZERO) that no

transformation has taken place.

" Shall be set to ZERO.

The methods used for data compression and other forms of data transformation
shallmight be addressed in a future OSTA document.

Bit 12 (Multi-versions):
! For OSTA UDF compliant media this bit shall indicate (ZERO) that multi-

versioned files are not present.

" Shall be set to ZERO.

OSTA Universal Disk Format Revision 1.0238

2.3.6 File Entry

struct FileEntry { /* ISO 13346 4/14.9 */
struct tag DescriptorTag;
struct icbtag ICBTag;
Uint32 Uid;
Uint32 Gid;
Uint32 Permissions;
Uint16 FileLinkCount;
Uint8 RecordFormat;
Uint8 RecordDisplayAttributes;
Uint32 RecordLength;
Uint64 InformationLength;
Uint64 LogicalBlocksRecorded;
struct timestamp AccessTime;
struct timestamp ModificationTime;
struct timestamp AttributeTime;
Uint32 Checkpoint;
struct long_ad ExtendedAttributeICB;
struct EntityID ImplementationIdentifier;
Uint64 UniqueID,
Uint32 LengthofExtendedAttributes;
Uint32 LengthofAllocationDescriptors;
byte ExtendedAttributes[??];
byte AllocationDescriptors[??];

}

NOTE: The total length of a FileEntry shall not exceed the size of one logical
block.

2.3.6.1 Uint8 RecordFormat;
! For OSTA UDF compliant media this bit shall indicate (ZERO) that the

structure of the information recorded in the file is not specified by this
field.

" Shall be set to ZERO.

2.3.6.2 Uint8 RecordDisplayAttributes;
! For OSTA UDF compliant media this bit shall indicate (ZERO) that the

structure of the information recorded in the file is not specified by this
field.

" Shall be set to ZERO.

OSTA Universal Disk Format Revision 1.0239

2.3.6.3 Uint8 RecordLength;
! For OSTA UDF compliant media this bit shall indicate (ZERO) that the

structure of the information recorded in the file is not specified by this
field.

" Shall be set to ZERO.

2.3.6.4 struct EntityID ImplementationIdentifier;
;

Refer to the section on Entity Identifier.

2.3.6.5 Uint64 UniqueID

For the root directory of a file set this value shall be set to ZERO.

It is required that this value be maintained and unique for every file and directory
in the LogicalVolume. This includes FileEntry descriptors defined for Extended
Attribute spaces. The FileEntry for the Extended Attribute space shall contain the
same UniqueID as the file to which it is attached.

NOTE: The UniqueID values 1-15 shall be reserved for the use of Macintosh
implementations.

2.3.7 Unallocated Space Entry
struct UnallocatedSpaceEntry { /* ISO 13346 4/14.11 */

struct tag DescriptorTag;
struct icbtag ICBTag;
Uint32 LengthofAllocationDescriptors;
byte AllocationDescriptors[??];

}

NOTE: The maximum length of an UnallocatedSpaceEntry shall be one Logical
Block.

2.3.7.1 byte AllocationDescriptors
Only Short Allocation Descriptors shall be used.

NOTE: The upper 2 bits of the extent length field in allocation descriptors
specify an extent type (ISO 13346 4/14.14.1.1). For the allocation descriptors
specified for the UnallocatedSpaceEntry the type shall be set to a value of 1 to
indicate extent allocated but not recorded, or shall be set to a value of 3 to
indicate the extent is the next extent of allocation descriptors. This next extent of
allocation descriptors shall be limited to the length of one Logical Block.

OSTA Universal Disk Format Revision 1.0240

AllocationDescriptors shall be ordered sequentially in ascending location order.
No overlapping AllocationDescriptors shall exist in the table. For example,
ad.location = 2, ad.length = 2048 (logical block size = 1024) then
nextad.location = 3 is not allowed. Adjacent AllocationDescriptors shall not be
contiguous. For example ad.location = 2, ad.length = 1024 (logical block size =
1024), nextad.location = 3 is not allowed and would instead be a single
AllocationDescriptor, ad.location = 2, ad.length = 2048. The only case where
adjacent AllocationDescriptors may be contiguous is when the ad.length of one of
the adjacent AllocationDescriptors is equal to the maximum
AllocationDescriptors length.

2.3.8 Space Bitmap Descriptor
struct SpaceBitmap { /* ISO 13346 4/14.11 */

struct Tag DescriptorTag;
Uint32 NumberOfBits;
Uint32 NumberOfBytes;
byte Bitmap[??];

}

2.3.8.1 struct Tag DescriptorTag
The calculation and maintenance of the DescriptorCRC field of the Descriptor
Tag for the SpaceBitmap descriptor is optional. If the CRC is not maintained then
both the DescriptorCRC and DescriptorCRCLength fields shall be ZERO.

2.3.9 Partition Integrity Entry

struct PartitionIntegrityEntry { /* ISO 13346 4/14.13 */
struct tag DescriptorTag;
struct icbtag ICBTag;
struct timestamp RecordingTime;
Uint8 IntegrityType;
byte Reserved[175];
struct EntityID ImplementationIdentifier;
byte ImplementationUse[256];

}

With the functionality of the Logical Volume Integrity Descriptor this descriptor
is not needed, therefore this descriptor shall not be recorded.

OSTA Universal Disk Format Revision 1.0241

2.3.10 Allocation Descriptors

When constructing the data area of a file an implementation has several types of
allocation descriptors from which to choose. The following guidelines shall be followed
in choosing the proper allocation descriptor to be used:

Short Allocation Descriptor - For a Logical Volume that resides on a single
Volume with no intent to expand the Logical Volume beyond the single volume
Short Allocation Descriptors should be used. For example a Logical Volume
created for a stand alone drive.

NOTE: Refer to section 2.2.2.2 on the MaximumInterchangeLevel.

Long Allocation Descriptor - For a Logical Volume that resides on a single
Logical Volume with intent to later expand the Logical Volume beyond the single
volume, or a Logical Volume that resides on multiple Volumes Long Allocation
Descriptors should be used. For example a Logical Volume created for a
jukebox.

NOTE: There is a benefit of using Long Allocation Descriptors even on a single
volume, which is the support of tracking erased extents on rewritable media. See
section 2.3.10.1 for additional information.

For both Short and Long Allocation Descriptors, if the 30 least significant bits of the
ExtentLength field is 0, then the 2 most significant bits shall be 0.

2.3.10.1 Long Allocation Descriptor

struct long_ad { /* ISO 13346 4/14.14.2 */
Uint32 ExtentLength;
Lb_addr ExtentLocation;
byte ImplementationUse[6];

}

To allow use of the ImplementationUse field by UDF and also by
implementations the following structure shall be recorded within the 6 byte
Implementation Use field.

struct ADImpUse
{

Uint16 flags;
byte impUse[4];

}

/*
* ADImpUse Flags (NOTE: bits 1-15 reserved for future use by UDF)

*/
#define EXTENTErased (0x01)

OSTA Universal Disk Format Revision 1.0242

In the interests of efficiency on Rewritable media that benefits from
preprocessing, the EXTENTErased flag shall be set to ONE to indicate an erased
extent. This applies only to extents of type not recorded but allocated.

2.3.11 Allocation Extent Descriptor

struct AllocationExtentDescriptor { /* ISO 13346 4/14.5 */
struct tag DescriptorTag;
Uint32 PreviousAllocationExtentLocation;
Uint32 LengthOfAllocationDescriptors;

}

NOTE:. AllocationDescriptor extents shall be a maximum of one logical block in
length.

2.3.11.1 Uint12 PreviousAllocationExtentLocation
! The previous allocation extent location shall not be used as specified

below.

" Shall be set to 0.

2.3.12 Pathname
2.3.12.1 Path Component

struct PathComponent { /* ISO 13346 4/14.16.1 */
Uint8 ComponentType;
Uint8 LengthofComponentIdentifier;
Uint16 ComponentFileVersionNumber;
char ComponentIdentifier[];

}

2.3.12.1.1 Uint16 ComponentFileVersionNumber
! There shall be only one version of a file as specified below with the value

being set to ZERO.

" Shall be set to ZERO.

2.42.3.13 Part 5 - Record StructureNon-Allocatable Space List
ISO 13346 does not provide for a mechanism to describe defective areas on media or
areas not usable due to allocation outside of the file system. The Non-Allocatable Space
List provides a method to describe space not usable by the file system. The Non-

OSTA Universal Disk Format Revision 1.0243

Allocatable Space List shall be recorded only on media systems that do not do defect
management (eg. CD-RW).

The Non-Allocatable Space List shall be generated at format time. All space indicated by
the Non-Allocatable Space List shall also be marked as allocated in the free space map.
The Non-Allocatable Space List shall be recorded as a file of the root directory. The file
name “Non-Allocatable Space” (#4E, #6F, #6E, #2D, #41, #6C,
#6C,#6F,#61,#74,#61,#62,#6C,#65, #20, #70, #61, #63, #65) shall be used. The file shall
be marked with the attributes Hidden (bit 0 of file characteristics set to ONE) and System
(bit 10 of ICB flags field set to ONE). The name may be recorded in any legal word size.
The information length of this file shall be zero. This file shall have all Non-Allocatable
sectors identified by its allocation extents. The allocation extents shall indicate that each
extent is allocated but not recorded. This list shall include both defective sectors found at
format time and space allocated for sparing at format time.

2.4 Part 5 - Record Structure
Record structure files shall not be created. If they are encountered on the media and they
are not supported by the implementation they shall be treated as an uninterpreted stream
of bytes.

OSTA Universal Disk Format Revision 1.0244

3. System Dependent Requirements
3.1 Part 1 - General
3.1.1 Timestamp

struct timestamp { /* ISO 13346 1/7.3 */
Uint16 TypeAndTimezone;
Uint16 Year;
Uint8 Month;
Uint8 Day;
Uint8 Hour;
Uint8 Minute;
Uint8 Second;
Uint8 Centiseconds;
Uint8 HundredsofMicroseconds;
Uint8 Microseconds;

}

3.1.1.1 Uint8 Centiseconds;
! For operating systems that do not support the concept of

centiseconds the implementation shall ignore this field.

" For operating systems that do not support the concept of
centiseconds the implementation shall set this field to ZERO.

3.1.1.2 Uint8 HundredsofMicroseconds;
! For operating systems that do not support the concept of hundreds

of Microseconds the implementation shall ignore this field.

" For operating systems that do not support the concept of a
hundreds of Microseconds the implementation shall set this field to
ZERO.

3.1.1.3 Uint8 Microseconds;
! For operating systems that do not support the concept of

microseconds the implementation shall ignore this field.

" For operating systems that do not support the concept of
microseconds the implementation shall set this field to ZERO.

OSTA Universal Disk Format Revision 1.0245

3.2 Part 3 - Volume Structure
3.2.1 Logical Volume Header Descriptor

struct LogicalVolumeHeaderDesc { /* ISO 13346 4/14.15 */
Uint64 UniqueID,
bytes reserved[24]

}

3.2.1.1 Uint64 UniqueID

This field contains the next UniqueID value which should be used.

NOTE: For compatibility with Macintosh systems implementations should keep
this value less than the maximum value of a Int32 (231 - 1).

OSTA Universal Disk Format Revision 1.0246

3.3 Part 4 - File System
3.3.1 File Identifier Descriptor

struct FileIdentifierDescriptor { /* ISO 13346 4/14.4 */
struct tag DescriptorTag;
Uint16 FileVersionNumber;
Uint8 FileCharacteristics;
Uint8 LengthofFileIdentifier;
struct long_ad ICB;
Uint16 LengthofImplementationUse;
byte ImplementationUse[??];
char FileIdentifier[??];
byte Padding[??];

}

NOTE: All UDF directories shall include a File Identifier Descriptor that
indicates the location of the parent directory. The File Identifier Descriptor
describing the parent directory shall be the first File Identifier Descriptor recorded
in the directory. The parent directory of the Root directory shall be Root, as
stated in ISO 13346-4, section 8.6

3.3.1.1 Uint8 FileCharacteristics
The following sections describe the usage of the FileCharacteristics under
various operating systems.

3.3.1.1.1 MS-DOS, , OS/2, Windows 95, Windows NT, Macintosh
! If Bit 0 is set to ONE, the file shall be considered a "hidden" file.

If Bit 1 is set to ONE, the file shall be considered a "directory."
If Bit 2 is set to ONE, the file shall be considered "deleted."
If Bit 3 is set to ONE, the ICB field within the associated FileIdentifier
structure shall be considered as identifying the "parent" directory of
the directory that this descriptor is recorded in

" If the file is designated as a "hidden" file, Bit 0 shall be set to ONE.
If the file is designated as a "directory",," Bit 1 shall be set to ONE.
If the file is designated as "deleted",," Bit 2 shall be set to ONE.

3.3.1.1.2 UNIX

Under UNIX these bits shall be processed the same as specified in
3.3.1.1.1., except for hidden files which will be processed as normal non-
hidden files.

OSTA Universal Disk Format Revision 1.0247

3.3.2 ICB Tag

struct icbtag { /* ISO 13346 4/14.6 */
Uint32 PriorRecordedNumberofDirectEntries;
Uint16 StrategyType;
byte StrategyParameter[2];
Uint16 NumberofEntries;
byte Reserved;
Uint8 FileType;
Lb_addr ParentICBLocation;
Uint16 Flags;

}

3.3.2.1 Uint16 Flags

3.3.2.1.1 MS-DOS, OS/2, Windows 95, Windows NT
, OS/2

Bits 6 & 7 (Setuid & Setgid):
! Ignored.

" In the interests of maintaining security under environments which do
support these bits; bits 6 and 7 shall be set to ZERO if any one of the
following conditions are true :

• A file is created.

• The attributes/permissions associated with a file, are modified .

• A file is written to (the contents of the data associated with a file
are modified).

Bit 8 (Sticky):
! Ignored.

" Shall be set to ZERO.

Bit 10 (System):
! Mapped to the MS-DOS / OS/2 system bit.

" Mapped from the MS-DOS / OS/2 system bit.

OSTA Universal Disk Format Revision 1.0248

3.3.2.1.2 Macintosh

Bits 6 & 7 (Setuid & Setgid):
! Ignored.

" In the interests of maintaining security under environments which do
support these bits; bits 6 and 7 shall be set to ZERO if any one of the
following conditions are true :

• A file is created.

• The attributes/permissions associated with a file, are modified .

• A file is written to (the contents of the data associated with a file
are modified).

Bit 8 (Sticky):
! Ignored.

" Shall be set to ZERO.

Bit 10 (System):
! Ignored.

" Shall be set to ZERO.

3.3.2.1.3 UNIX
Bits 6, 7 & 8 (Setuid, Setgid, Sticky):
These bits are mapped to/from the corresponding standard UNIX file system bits.

Bit 10 (System):
! Ignored.

" Shall be set to ZERO upon file creation only, otherwise maintained.

OSTA Universal Disk Format Revision 1.0249

3.3.3 File Entry

struct FileEntry { /* ISO 13346 4/14.9 */
struct tag DescriptorTag;
struct icbtag ICBTag;
Uint32 Uid;
Uint32 Gid;
Uint32 Permissions;
Uint16 FileLinkCount;
Uint8 RecordFormat;
Uint8 RecordDisplayAttributes;
Uint32 RecordLength;
Uint64 InformationLength;
Uint64 LogicalBlocksRecorded;
struct timestamp AccessTime;
struct timestamp ModificationTime;
struct timestamp AttributeTime;
Uint32 Checkpoint;
struct long_ad ExtendedAttributeICB;
struct EntityID ImplementationIdentifier;
Uint64 UniqueID,
Uint32 LengthofExtendedAttributes;
Uint32 LengthofAllocationDescriptors;
byte ExtendedAttributes[??];
byte AllocationDescriptors[??];

}

NOTE: The total length of a FileEntry shall not exceed the size of one logical
block.

3.3.3.1 Uint32 Uid
! For operating systems that do not support the concept of a user identifier

the implementation shall ignore this field. For operating systems that do
support this field a value of 232 - 1 shall indicate an invalid UID, otherwise
the field contains a valid user identifier.

" For operating systems that do not support the concept of a user identifier
the implementation shall set this field to 232 - 1 to indicate an invalid UID,
unless otherwise specified by the user.

3.3.3.2 Uint32 Gid
! For operating systems that do not support the concept of a group identifier

the implementation shall ignore this field. For operating systems that do
support this field a value of 232 - 1 shall indicate an invalid GID, otherwise
the field contains a valid group identifier.

OSTA Universal Disk Format Revision 1.0250

" For operating systems that do not support the concept of a group identifier
the implementation shall set this field to 232 - 1 to indicate an invalid GID,
unless otherwise specified by the user.

3.3.3.3 Uint32 Permissions;
/* Definitions: */
/* Bit for a File for a Directory */
/* ------- ------------------------ ---------------------------- */
/* Execute May execute file May search directory */
/* Write May change file contents May create and delete files */
/* Read May examine file contents May list files in directory */
/* ChAttr May change file attributes May change dir attributes */
/* Delete May delete file May delete directory */

#define OTHER_Execute 0x00000001
#define OTHER_Write 0x00000002
#define OTHER_Read 0x00000004
#define OTHER_ChAttr 0x00000008
#define OTHER_Delete 0x00000010

#define GROUP_Execute 0x00000020
#define GROUP_Write 0x00000040
#define GROUP_Read 0x00000080
#define GROUP_ChAttr 0x00000100
#define GROUP_Delete 0x00000200

#define OWNER_Execute 0x00000400
#define OWNER_Write 0x00000800
#define OWNER_Read 0x00001000
#define OWNER_ChAttr 0x00002000
#define OWNER_Delete 0x00004000

The concept of permissions which deals with security is not completely portable between
operating systems. This document attempts to maintain consistency among
implementations in processing the permission bits by addressing the following basic
issues:

1. How should an implementation handle Owner, Group and Other permissions
when the operating system has no concept of User and Group Ids?

2. How should an implementation process permission bits when encountered,
specifically permission bits that do not directly map to an operating system
supported permission bit?

3. What default values should be used for permission bits that do not directly
map to an operating system supported permission bit when creating a new
file?

User, Group and Other
In general, for operating systems that do not support User and Group Ids the following
algorithm should be used when processing permission bits:

When reading a specific permission, the logical OR of all three (owner, group,
other) permissions should be the value checked. For example a file would be
considered writable if the logical OR of OWNER_Write, GROUP_Write and
OTHER_Write was equal to one.

OSTA Universal Disk Format Revision 1.0251

When setting a specific permission the implementation should set all three
(owner, group, other) sets of permission bits. For example to mark a file as
writable the OWNER_Write, GROUP_Write and OTHER_Write should all be set
to one.

Processing Permissions
Implementation shall process the permission bits according to the following table which
describes how to process the permission bits under the operating systems covered by this
document. The table addresses the issues associated with permission bits that do not
directly map to an operating system supported permission bit.

Permission File/Directory Description DOS OS/2 Mac OS UNIX
Read file The file may be read E E E E
Read directory The directory may be read E E E E
Write file The file’s contents may be

modified
E E E E

Write directory Files or subdirectories may be
created, deleted or renamed

E E E E

Execute file The file by be executed. I I I E
Execute directory The directory may be searched

for a specific file or
subdirectory.

E E E E

Attribute file The file’s permissions may be
changed.

E E E E

Attribute directory The directory’s permissions
may be changed.

E E E E

Delete file The file may be deleted. E E E E
Delete directory The directory may be deleted. E E E E
Permission File/Directory Description DOS OS/2 Win

95
Win
NT

Mac
OS

UNIX

Read file The file may be read E E E E E E
Read directory The directory may be read E E E E E E
Write file The file’s contents may be modified E E E E E E
Write directory Files or subdirectories may be created,

deleted or renamed
E E E E E E

Execute file The file by be executed. I I I I I E
Execute directory The directory may be searched for a

specific file or subdirectory.
E E E E E E

Attribute file The file’s permissions may be changed. E E E E E E
Attribute directory The directory’s permissions may be

changed.
E E E E E E

Delete file The file may be deleted. E E E E E E
Delete directory The directory may be deleted. E E E E E E
E - Enforce, I - Ignore

The Execute bit for a directory, sometimes referred to as the search bit, has special
meaning. This bit enables a directory to be searched, but not have its contents listed. For
example assume a directory called PRIVATE exists which only has the Execute
permission and does not have the Read permission bit set. The contents of the directory
PRIVATE can not be listed. Assume there is a file within the PRIVATE directory called

OSTA Universal Disk Format Revision 1.0252

README. The user can get access to the README file since the PRIVATE directory is
searchable.

To be able to list the contents of a directory both the Read and Execute permission bits
must be set for the directory. To be able to create, delete and rename a file or
subdirectory both the Write and Execute permission bits must be set for the directory.
To get a better understanding of the Execute bit for a directory reference any UNIX book
that covers file and directory permissions. The rules defined by the Execute bit for a
directory shall be enforced by all implementations.

NOTE: To be able to delete a file or subdirectory the Delete permission bit for the file or
subdirectory must be set, and both the Write and Execute permission bits must be set for
the directory it occupies.

Default Permission Values
For the operating systems covered by this document the following table describes what
default values should be used for permission bits that do not directly map to an operating
system supported permission bit when creating a new file.

Permission File/Directory Description DOS OS/2 Mac OS UNIX
Read file The file may be read 1 1 1 U
Read directory The directory may be read, only

if the directory is also marked
as Execute.

1 1 1 U

Write file The file’s contents may be
modified

U U U U

Write directory Files or subdirectories may be
renamed, added, or deleted,
only if the directory is also
marked as Execute.

U U U U

Execute file The file by be executed. 0 0 0 U
Execute directory The directory may be searched

for a specific file or
subdirectory.

1 1 1 U

Attribute file The file’s permissions may be
changed.

1 1 1 Note 1

Attribute directory The directory’s permissions
may be changed.

1 1 1 Note 1

Delete file The file may be deleted. Note 2 Note 2 Note 2 Note 2

Delete directory The directory may be deleted. Note 2 Note 2 Note 2 Note 2

Permission File/Directory Description DOS OS/2 Win
95

Win
NT

Mac
OS

UNIX

Read file The file may be read 1 1 1 1 1 U
Read directory The directory may be read, only if the

directory is also marked as Execute.
1 1 1 1 1 U

Write file The file’s contents may be modified U U U U U U
Write directory Files or subdirectories may be renamed,

added, or deleted, only if the directory
is also marked as Execute.

U U U U U U

Execute file The file by be executed. 0 0 0 0 0 U
Execute directory The directory may be searched for a 1 1 1 1 1 U

OSTA Universal Disk Format Revision 1.0253

specific file or subdirectory.
Attribute file The file’s permissions may be changed. 1 1 1 1 1 Note 1
Attribute directory The directory’s permissions may be

changed.
1 1 1 1 1 Note 1

Delete file The file may be deleted. Note 2 Note 2 Note
2

Note 2 Note 2 Note 2

Delete directory The directory may be deleted. Note 2 Note 2 Note
2

Note 2 Note 2 Note 2

U - User Specified, 1 - Set, 0 - Clear

NOTE 1: Under UNIX only the owner of a file/directory may change its attributes.

NOTE 2: The Delete permission bit should be set based upon the status of the Write
permission bit. Under DOS, OS/2 and Macintosh, if a file or directory is marked as
writable (Write permission set) then the file is considered deletable and the Delete
permission bit should be set. If a file is read only then the Delete permission bit should
not be set. This applies to file create as well as changing attributes of a file.

3.3.3.4 Uint64 UniqueID

NOTE: For some operating systems (i.e. Macintosh) this value needs to be less
than the max value of a Int32 (231 - 1). Under the Macintosh operating system this
value is used to represent the Macintosh directory/file ID. Therefore an
implementation should attempt to keep this value less than the max value of a
Int32 (231 - 1). The values 1-15 shall be reserved for the use of Macintosh
implementations.

3.3.3.5 byte Extended Attributes

Certain extended attributes should be recorded in this field of the FileEntry for
performance reasons. Other extended attributes should be recorded in an ICB
pointed to by the field ExtendedAttributeICB. In the section on Extended
Attributes it will be specified which extended attributes should be recorded in this
field.

OSTA Universal Disk Format Revision 1.0254

3.3.4 Extended Attributes

In order to handle some of the longer Extended Attributes (EAs) which may vary in
length, the following rules apply to the EA space.

1. All EAs with an attribute length greater than or equal to a logical block shall
be block aligned by starting and ending on a logical block boundary.

2. Smaller EAs shall be constrained to an attribute length which is a multiple of
4 bytes.

3. The Extended Attribute space shall appear as a single contiguous logical space
constructed as follows:

ISO/IEC 13346 EAs
Non block aligned Implementation Use EAs
Block aligned Implementation Use EAs
Application Use EAs

3.3.4.1 Extended Attribute Header Descriptor
struct ExtendedAttributeHeaderDescriptor { /* ISO 13346 4/14.10.1 */

struct tag DescriptorTag;
Uint32 ImplementationAttributesLocation;
Uint32 ApplicationAttributesLocation;

}

If the attributes associated with the location fields highlighted above do not exist,
then the value of the location field shall bepoint to the end ofbyte after the
extended attribute space.

3.3.4.2 Alternate Permissions
struct AlternatePermissionsExtendedAttribute { /* ISO 13346 4/14.10.4 */

Uint32 AttributeType;
Uint8 AttributeSubtype;
byte Reserved[3];
Uint32 AttributeLength;
Uint16 OwnerIdentification;
Uint16 GroupIdentification;
Uint16 Permission;

}

This structure shall not be recorded.

OSTA Universal Disk Format Revision 1.0255

3.3.4.3 File Times Extended Attribute
struct FileTimesExtendedAttribute { /* ISO 13346 4/14.10.5 */

Uint32 AttributeType;
Uint8 AttributeSubtype;
byte Reserved[3];
Uint32 AttributeLength;
Uint32 DataLength;
Uint32 FileTimeExistence;
byte FileTimes;

}

3.3.4.3.1 Uint32 FileTimeExistance
3.3.4.3.1.1 Macintosh OS
OS

This field shall be set to indicate that only the file creation time has been
recorded.

3.3.4.3.1.2 Other OS
This structure need not be recorded.

3.3.4.3.2 byte FileTimes
3.3.4.3.2.1 Macintosh OS

! Shall be interpreted as the creation time of the associated file.

" Shall be set to creation time of the associated file.

If the File Times Extended Attribute does not exist then a Macintosh
implementation shall use the ModificationTime field of the File Entry to
represent the file creation time.

3.3.4.3.2.2 Other OS
This structure need not be recorded.

3.3.4.4 Device Specification Extended Attribute
struct DeviceSpecificationExtendedAttribute { /* ISO 13346 4/14.10.7 */

Uint32 AttributeType;
Uint8 AttributeSubtype;
byte Reserved[3];
Uint32 AttributeLength;
Uint32 ImplementationUseLength; /* (=IU_L) */
Uint32 MajorDeviceIdentification;
Uint32 MinorDeviceIdentification;
byte ImplementationUse[IU_L];

}

OSTA Universal Disk Format Revision 1.0256

The following paradigm shall be followed by an implementation that creates a
Device Specification Extended Attribute associated with a file :

If and only if a file has a DeviceSpecificationExtendedAttribute associated
with it, the contents of the FileType field in the icbtag structure be set to 6
(indicating a block special device file), OR 7 (indicating a character
special device file).

If the contents of the FileType field in the icbtag structure do not equal 6
or 7, the DeviceSpecificationExtendedAttribute associated with a file shall
be ignored.

In the event that the contents of the FileType field in the icbtag structure
equal 6 or 7, and the file does not have a
DeviceSpecificationExtendedAttribute associated with it, access to the file
shall be denied.

For operating system environments that do not provide for the semantics
associated with a block special device file, requests to
open/read/write/close a file that has the
DeviceSpecificationExtendedAttribute associated with it shall be denied.

All implementations shall record a developer ID in the ImplementationUse
field that uniquely identifies the current implementation.

3.3.4.5 Implementation Use Extended Attribute
struct ImplementationUseExtendedAttribute { /* ISO 13346 4/14.10.8 */

Uint32 AttributeType;
Uint8 AttributeSubtype;
byte Reserved[3];
Uint32 AttributeLength;
Uint32 ImplementationUseLength; /* (=IU_L) */
struct EntityID ImplementationIdentifier;
byte ImplementationUse[IU_L];

}

The AttributeLength field specifies the length of the entire extended attribute. For
variable length extended attributes defined using the Implementation Use
Extended Attribute the Attribute Length field should be large enough to leave
padding space between the end of the Implementation Use field and the end of the
Implementation Use Extended Attribute.

The following sections describe how the Implementation Use Extended Attribute
is used under various operating systems to store operating system specific
extended attributes.

OSTA Universal Disk Format Revision 1.0257

The structures defined in the following sections contain a header checksum field.
This field represents a 16-bit checksum of the Implementation Use Extended
Attribute header. The fields AttributeType through ImplementationIdentifier
inclusively represent the data covered by the checksum. The header checksum
field is used to aid in disaster recovery of the extended attribute space. C source
code for the header checksum may be found in the appendix.

NOTE: All compliant implementations shall preserve existing extended attributes
encountered on the media. Implementations shall create and support the extended
attributes for the operating system they currently support. For example, a
Macintosh implementation shall preserve any OS/2 extended attributes
encountered on the media. It shall also create and support all Macintosh extended
attributes specified in this document.

3.3.4.5.1 All Operating Systems
3.3.4.5.1.1 FreeEASpace

This extended attribute shall be used to indicate unused space within the
extended attribute space. This extended attributes shall be stored as an
Implementation Use Extended Attribute whose ImplementationIdentifier
shall be set to:

"*UDF FreeEASpace"

The ImplementationUse area for this extended attribute shall be structured
as follows:

FreeEASpace format
RBP Length Name Contents

0 2 Header Checksum Uint16
2 IU_L-1 Free EA Space bytes

This extended attribute allows an implementation to shrink/grow the total
size of other extended attributes without rewriting the complete extended
attribute space. The FreeEASpace extended attribute may be overwritten
and the space re-used by any implementation who sees a need to overwrite
it.

3.3.4.5.1.2 DVD Copyright Management Information

This extended attribute shall be used to store DVD Copyright
Management Information. This extended attribute shall be stored as an
Implementation Use Extended Attribute whose ImplementationIdentifier
shall be set to:

"*UDF DVD CGMS Info"

OSTA Universal Disk Format Revision 1.0258

The ImplementationUse area for this extended attribute shall be structured
as follows:

DVD CGMS Info format
RBP Length Name Contents

0 2 Header Checksum Uint16
2 1 CGMS Information byte
3 1 Data Structure Type Uint8
4 4 Protection System Information bytes

This extended attribute allows DVD Copyright Management Information
to be stored. The interpretation of this format shall be defined in the DVD
specification published by the DVD Consortium (see 6.9.3). Support for
this extended attribute is optional.

3.3.4.5.2 MS-DOS, Windows 95, Windows NT
! Ignored.

" Not supported. Extended attributes for existing files on the media shall be
preserved.

3.3.4.5.3 OS/2

OS/2 supports an unlimited number of extended attributes which shall be
supported through the use of the following two Implementation Use Extended
Attributes.

3.3.4.5.3.1 OS2EA
This extended attribute contains all OS/2 definable extended attributes
which shall be stored as an Implementation Use Extended Attribute whose
ImplementationIdentifier shall be set to:

"*UDF OS/2 EA"

The ImplementationUse area for this extended attribute shall be structured
as follows:

OS2EA format
RBP Length Name Contents

0 2 Header Checksum Uint16
2 IU_L-2 OS/2 Extended Attributes FEA

OSTA Universal Disk Format Revision 1.0259

The OS2ExtendedAttributes field contains a table of OS/2 Full EAs (FEA)
as shown below.

FEA format
RBP Length Name Contents

0 1 Flags Uint8
1 1 Length of Name (=L_N) Uint8
2 2 Length of Value (=L_V) Uint16
4 L_N Name bytes

4+L_N L_V Value bytes

For a complete description of Full EAs (FEA) please reference the
following IBM document:

"Installable File System for OS/2 Version 2.0"
OS/2 File Systems Department
PSPC Boca Raton, Florida
February 17, 1992

3.3.4.5.3.2 OS2EALength
This attribute specifies the OS/2 Extended Attribute information length.
Since this value needs to be reported back to OS/2 under certain directory
operations, for performance reasons it should be recorded in the
ExtendedAttributes field of the FileEntry. This extended attribute shall be
stored as an Implementation Use Extended Attribute whose
ImplementationIdentifier shall be set to:

"*UDF OS/2 EALength"

The ImplementationUse area for this extended attribute shall be structured
as follows:

OS2EALength format
RBP Length Name Contents

0 2 Header Checksum Uint16
2 4 OS/2 Extended Attribute Length Uint32

The value recorded in the OS2ExtendedAttributeLength field shall be
equal to the ImplementationUseLength field of the OS2EA extended
attribute - 2.

3.3.4.5.4 Macintosh OS
OS

The Macintosh OS requires the use of the following four extended
attributes.

OSTA Universal Disk Format Revision 1.0260

3.3.4.5.4.1 MacVolumeInfo
This extended attribute contains Macintosh volume information which
shall be stored as an Implementation Use Extended Attribute whose
ImplementationIdentifier shall be set to:

"*UDF Mac VolumeInfo"

The ImplementationUse area for this extended attribute shall be structured
as follows:

MacVolumeInfo format
RBP Length Name Contents

0 2 Header Checksum Uint16
2 12 Last Modification Date timestamp

14 12 Last Backup Date timestamp
26 32 Volume Finder Information Uint32

The MacVolumeInfo extended attribute shall be recorded as an extended
attribute of the root directory FileEntry.

3.3.4.5.4.2 MacFinderInfo
This extended attribute contains Macintosh Finder information for the
associated file or directory. Since this information is accessed frequently,
for performance reasons it should be recorded in the ExtendedAttributes
field of the FileEntry.

The MacFinderInfo extended attribute shall be stored as an
Implementation Use Extended Attribute whose ImplementationIdentifier
shall be set to:

"*UDF Mac FinderInfo"

The ImplementationUse area for this extended attribute shall be structured
as follows:

MacFinderInfo format for a directory
RBP Length Name Contents

0 2 Header Checksum Uint16
2 2 Reserved for padding (=0) Uint16
4 4 Parent Directory ID Uint32
8 16 Directory Information UDFDInfo

24 16 Directory Extended Information UDFDXInfo

OSTA Universal Disk Format Revision 1.0261

MacFinderInfo format for a file
RBP Length Name Contents

0 2 Header Checksum Uint16
2 2 Reserved for padding (=0) Uint16
4 4 Parent Directory ID Uint32
8 16 File Information UDFFInfo

24 16 File Extended Information UDFFXInfo
40 4 Resource Fork Data Length Uint32
44 4 Resource Fork Allocated Length Uint32

The MacFinderInfo extended attribute shall be recorded as an extended
attribute of every file and directory within the Logical Volume.

The following structures used within the MacFinderInfo structure are
listed below for clarity. For complete information on these structures refer
to the Macintosh books called "Inside Macintosh". The volume and page
number listed with each structure correspond to a specific "Inside
Macintosh" volume and page.

UDFPoint format (Volume I, page 139)
RBP Length Name Contents

0 2 v Int16
2 2 h Int16

UDFRect format (Volume I, page 141)
RBP Length Name Contents

0 2 top Int16
2 2 left Int16
4 2 bottom Int16
6 2 right Int16

UDFDInfo format (Volume IV, page 105)
RBP Length Name Contents

0 8 frRect UDFRect
8 2 frFlags Int16

10 4 frLocation UDFPoint
14 2 frView Int16

UDFDXInfo format (Volume IV, page 106)
RBP Length Name Contents

0 4 frScroll UDFPoint
4 4 frOpenChain Int32
8 1 frScript Uint8
9 1 frXflags Uint8

10 2 frComment Int16
12 4 frPutAway Int32

UDFFInfo format (Volume II, page 84)

OSTA Universal Disk Format Revision 1.0262

RBP Length Name Contents
0 4 fdType Uint32
4 4 fdCreator Uint32
8 2 fdFlags Uint16

10 4 fdLocation UDFPoint
14 2 fdFldr Int16

UDFFXInfo format (Volume IV, page 105)
RBP Length Name Contents

0 2 fdIconID Int16
2 6 fdUnused bytes
8 1 fdScript Int8
9 1 fdXFlags Int8

10 2 fdComment Int16
12 4 fdPutAway Int32

NOTE: The above mentioned structures have there original Macintosh
names preceded by "UDF" to indicate that they are actually different from
the original Macintosh structures. On the media the UDF structures are
stored little endian as opposed to the original Macintosh structures which
are in big endian format.

3.3.4.5.4.3 MacUniqueIDTable
Table

This extended attribute contains a table used to look up the FileEntry for a
specified UniqueID. This table shall be stored as an Implementation Use
Extended Attribute whose ImplementationIdentifier shall be set to:

"*UDF Mac UniqueIDTable"

The ImplementationUse area for this extended attribute shall be structured
as follows:

MacUniqueIDTable format
RBP Length Name Contents

0 2 Header Checksum Uint16
2 2 Reserved for padding (=0) Uint16
4 4 Number of Unique ID Maps (=N_DID) Uint32
8 N_DID x 8 Unique ID Maps UniqueIDMap

UniqueIDMap format
RBP Length Name Contents

0 8 File Entry Location small_ad

OSTA Universal Disk Format Revision 1.0263

small_ad format
RBP Length Name Contents

0 2 Extent Length Uint16
2 6 Extent Location lb_addr (4/7.1)

This UniqueIDTable is used to look up the corresponding FileEntry for a
specified Macintosh directory/file ID (UniqueID). For example, given
some Macintosh directory/file ID i the corresponding FileEntry location
may be found in the (i-2) UniqueIDMap in the UniqueIDTable. The
correspondence of directory/file ID to UniqueID is (Directory/file ID -2)
because Macintosh directory/file IDs start at 2 while UniqueIDs start at 0.
In the Macintosh the root directory always has a directory ID of 2, which
corresponds to the requirement of having the UniqueID of the root
FileEntry have the value of 0.

If the value of the Extent Length field of the File Entry Location is 0 then
the corresponding UniqueID is free.

The MacUniqueIDTable extended attribute shall be recorded as an
extended attribute of the root directory.

The MacUniqueIDTable is created and updated only by implementations
that support the Macintosh. When the Logical Volume is modified by
implementations that do not support the MacUniqueIDTable can become
out of date in the following ways:

• Files can exist on the media which are not referenced in the
MacUniqueIDTable. This can result from a non-Macintosh
implementation creating a new file on the media.

• Files in the UniqueID table may no longer exist on the media. This
can result from a non-Macintosh implementation deleting a file on
the media

The Macintosh uses the UniqueID to directly address a file on the media
without reference to its file name. This will only happen if the file was
originally created by an implementation that supports the Macintosh.
Therefore any new files added to the logical volume by non-Macintosh
implementations will always be referenced by file name first, never by
UniqueID. At the first access of the file by file name, the Macintosh
implementation can detect that this UniqueID is not in the
MacUniqueIDTable and update the table appropriately.

The second problem is a little more difficult to address. The problem
occurs when a Macintosh implementation gets a reference to a file on the
media given a UniqueID. The Macintosh implementation needs to make
sure that the file the UniqueID references still exists. The following things
can be done:

OSTA Universal Disk Format Revision 1.0264

• Verify that the File Entry (FE) pointed to by the UniqueID
contains the same UniqueID.

• AND Verify that the block that contains the FE is not on the free
list. This could occur when the file is deleted by a non-Macintosh
implementation, and the FE has not been overwritten.

The only case that these two tests do not catch is when a file has been
deleted by a non-Macintosh implementation, and the logical block
associated with the FE has been reassigned to a new file, and the new file
has used the block in an extent of Allocated but not recorded.

3.3.4.5.4.4 MacResourceFork
This extended attribute contains the Macintosh resource fork data for the
associated file. The resource fork data shall be stored as an
Implementation Use Extended Attribute whose ImplementationIdentifier
shall be set to:

"*UDF Mac ResourceFork"

The ImplementationUse area for this extended attribute shall be structured
as follows:

MacResourceFork format
RBP Length Name Contents

0 2 HeaderChecksum Uint16
2 IU_L-2 Resource Fork Data bytes

The MacResourceFork extended attribute shall be recorded as an extended
attribute of all files, with > 0 bytes in the resource fork, within the Logical
Volume.

The two fields of the MacFinderInfo extended attribute the reference the
MacResourceFork extended attributes are defined as follows:

Resource Fork Data Length - Shall be set to the length of the
actual data considered to be part of the resource fork.
Resource Fork Allocated Length - Shall be set to the total amount
of space in bytes allocated to the resource fork.

3.3.4.5.5 UNIX
! Ignored.

" Not supported. Extended attributes for existing files on the media
shall be preserved.

OSTA Universal Disk Format Revision 1.0265

3.3.4.6 Application Use Extended Attribute
struct ApplicationUseExtendedAttribute { /* ISO 13346 4/14.10.9 */

Uint32 AttributeType; /* = 65536 */
Uint8 AttributeSubtype;
byte Reserved[3];
Uint32 AttributeLength;
Uint32 ApplicationUseLength; /* (=AU_L) */
struct EntityID ApplicationIdentifier;
byte ApplicationUse[AU_L];

}

The AttributeLength field specifies the length of the entire extended attribute. For
variable length extended attributes defined using the Application Use Extended
Attribute the Attribute Length field should be large enough to leave padding space
between the end of the ApplicationUse field and the end of the Application Use
Extended Attribute.

The structures defined in the following section contains a header checksum field.
This field represents a 16-bit checksum of the Application Use Extended Attribute
header. The fields AttributeType through ApplicationIdentifier inclusively
represent the data covered by the checksum. The header checksum field is used to
aid in disaster recovery of the extended attribute space. C source code for the
header checksum may be found in the appendix.

NOTE: All compliant implementations shall preserve existing extended attributes
encountered on the media. Implementations shall create and support the extended
attributes for the operating system they currently support. For example, a
Macintosh implementation shall preserve any OS/2 extended attributes
encountered on the media. It shall also create and support all Macintosh extended
attributes specified in this document.

3.3.4.6.1 All Operating Systems
This extended attribute shall be used to indicate unused space within the
extended attribute space reserved for Application Use Extended Attributes. This
extended attribute shall be stored as an Application Use Extended Attribute whose
ApplicationIdentifier shall be set to:

"*UDF FreeAppEASpace"

OSTA Universal Disk Format Revision 1.0266

The ApplicationUse area for this extended attribute shall be structured as follows:

FreeAppEASpace format
RBP Length Name Contents

0 2 Header Checksum Uint16
2 IU_L-1 Free EA Space bytes

This extended attribute allows an implementation to shrink/grow the total size of
other extended attributes without rewriting the complete extended attribute space.
The FreeAppEASpace extended attribute may be overwritten and the space re-
used by any implementation who sees a need to overwrite it.

OSTA Universal Disk Format Revision 1.0267

4. User Interface Requirements
4.1 Part 3 - Volume Structure

Part 3 of ISO/IEC 13346 contains various Identifiers which, depending upon the
implementation, may have to be presented to the user.

• VolumeIdentifier
• VolumeSetIdentifier
• LogicalVolumeID

These identifiers, which are stored in CS0, may have to go through some form of
translation to be displayable to the user. Therefore when an implementation must
perform an OS specific translation on the above listed identifiers the
implementation shall use the algorithms described in section 4.1.2.1.

C source code for the translation algorithms may be found in the appendices of
this document.

4.2 Part 4 - File System

4.2.1 ICB Tag

struct icbtag { /* ISO 13346 4/14.6 */
Uint32 PriorRecordedNumberofDirectEntries;
Uint16 StrategyType;
byte StrategyParameter[2];
Uint16 NumberofEntries;
byte Reserved; /* == #00 */
Uint8 FileType;
Lb_addr ParentICBLocation;
Uint16 Flags;

}

4.2.1.1 FileType
Any open/close/read/write requests for file(s) that have any of the following
values in this field shall result in an Access Denied error condition under non-
UNIX operating system environments :

FileType values - 0 (Unknown), 6 (block device), 7 (character device), 9
(FIFO), and 10 (C_ISSOCK).

OSTA Universal Disk Format Revision 1.0268

Any open/close/read/write requests to a file of type 12 (SymbolicLink) shall
access the file/directory to which the symbolic link is pointing.

4.2.2 File Identifier Descriptor

struct FileIdentifierDescriptor { /* ISO 13346 4/14.4 */
struct tag DescriptorTag;
Uint16 FileVersionNumber;
Uint8 FileCharacteristics;
Uint8 LengthofFileIdentifier;
struct long_ad ICB;
Uint16 LengthofImplementationUse;
byte ImplementationUse[??];
char FileIdentifier[??];
byte Padding[??];

}

4.2.2.1 char FileIdentifier
Since most operating systems have their own specifications as to characteristics of
a legal FileIdentifier, this becomes a problem with interchange. Therefore since
all implementations must perform some form of FileIdentifier translation it would
be to the users advantage if all implementations used the same algorithm.

The problems with FileIdentifier translations fall within one or more of the
following categories:

• Name Length -Most operating systems have some fixed limit for
the length of a file identifier.

• Invalid Characters - Most operating systems have certain
characters considered as being illegal within a file identifier name.

• Displayable Characters - Since UDF supports the Unicode
character set standard characters within a file identifier may be
encountered which are not displayable on the receiving system.

• Case Insensitive - Some operating systems are case insensitive in
regards to file identifiers. For example OS/2 preserves the original
case of the file identifier when the file is created, but uses a case
insensitive operations when accessing the file identifier. In OS/2
“Abc” and “ABC” would be the same file name.

• Reserved Names - Some operating systems have certain names that
cannot be used for a file identifier name.

OSTA Universal Disk Format Revision 1.0269

The following sections outline the FileIdentifier translation algorithm for each
specific operating system covered by this document. This algorithm shall be used
by all OSTA UDF compliant implementations. The algorithm only applies when
reading an illegal FileIdentifier. The original FileIdentifier name on the media
should not be modified. This algorithm shall be applied by any implementation
which performs some form of FileIdentifier translation to meet operating system
file identifier restrictions.

All OSTA UDF compliant implementations shall support the UDF translation
algorithms, but may support additional algorithms. If multiple algorithms are
supported the user of the implementation shall be provided with a method to
select the UDF translation algorithms. It is recommended that the default
displayable algorithm be the UDF defined algorithm.

The primary goal of these algorithms is to produce a unique file name that meets
the specific operating system restrictions without having to scan the entire
directory in which the file resides.

C source code for the following algorithms may be found in the appendices of this
document.

NOTE: In the definition of the following algorithms anytime a d-character is
specified in quotes, the Unicode hexadecimal value will also be specified. In
addition the following algorithms reference “CS0 Hex representation”, which
corresponds to using the Unicode values #0030 - #0039, and #0041 - #0046 to
represent a value in hex.

The following algorithms could still result in name-collisions being reported to
the user of an implementation. However, the rationale includes the need for
efficient access to the contents of a directory and consistent name translations
across logical volume mounts and file system driver implementations, while
allowing the user to obtain access to any file within the directory (through
possibly renaming a file).

Definitions:
A FileIdentifier shall be considered as being composed of two parts, a file name
and file extension.

The character '.' (#002E) shall be considered as the separator for the FileIdentifier
of a file; characters appearing subsequent to the last '.' (#002E) shall be
considered as constituting the file extension if and only if it is less than or equal to
5 characters in length, otherwise the file extension shall not exist. Characters
appearing prior to the file extension, excluding the last '.' (#002E), shall be
considered as constituting the file name.

OSTA Universal Disk Format Revision 1.0270

NOTE: Even though OS/2, Macintosh, and UNIX do not have an official
concept of a filename extension it is common file naming conventions to
end a file with “.” followed by a 1 to 5 character extension. Therefore the
following algorithms attempt to preserve the file extension up to a
maximum of 5 characters.

4.2.2.1.1 MS-DOS

Due to the restrictions imposed by the MS DOS operating system environments
on the FileIdentifier associated with a file the following methodology shall be
employed to handle FileIdentifier(s) under the above-mentioned operating system
environments :

Restrictions: The file name component of the FileIdentifier shall not exceed 8
characters. The file extension component of the FileIdentifier shall not exceed 3
characters.

1. FileIdentifier Lookup: Upon request for a "lookUp" of a FileIdentifier,
a case-insensitive comparison shall be performed.

2. Validate FileIdentifer: If the FileIdentifier is a valid MS-DOS file
identifier then do not apply the following steps.

3. Remove Spaces: All embedded spaces within the identifier shall be
removed.

4. Invalid Characters: A FileIdentifier that contains characters considered
invalid within a file name or file extension (as defined above), or not
displayable in the current environment, shall have them translated into
"_" (#005F). (the file identifier on the media is NOT modified).
Multiple sequential invalid or non-displayable characters shall be
translated into a single “_” (#005F) character. Reference the appendix
on invalid characters for a complete list.

5. Leading Periods: In the event that there do not exist any characters
prior to the first "." (#002E) character, leading "." (#002E) characters
shall be disregarded up to the first non “.” (#002E) character, in the
application of this heuristic.

6. Multiple Periods: In the event that the FileIdentifier contains multiple
"." (#002E) characters, all characters appearing subsequent to the last
'.' (#002E) shall be considered as constituting the file extension if and
only if it is less than or equal to 5 characters in length, otherwise the
file extension shall not exist. Characters appearing prior to the file
extension, excluding the last '.' (#002E), shall be considered as
constituting the file name. All embedded "." (#002E) characters within
the file name shall be removed.

7. Long Extension: In the event that the number of characters constituting
the file extension at this step in the process is greater than 3, the file
extension shall be regarded as having been composed of the first 3

OSTA Universal Disk Format Revision 1.0271

characters amongst the characters constituting the file extension at this
step in the process.

8. Long Filename: In the event that the number of characters constituting
the file name at this step in the process is greater than 8, the file name
shall be truncated to 4 characters.

9. FileIdentifier CRC: Since through the above process character
information from the original FileIdentifier is lost the chance of
creating a duplicate FileIdentifier in the same directory increases. To
greatly reduce the chance of having a duplicate FileIdentifier the file
name shall be modified to contain a CRC of the original FileIdentifier.
The file name shall be composed of the first 4 characters constituting
the file name at this step in the process, followed by the separator “#”
(#0023); followed by a 34 digit CS0 Hex representation of the least
significant 12 bits of the 16--bit CRC of the original CS0
FileIdentifier. NOTE: All other algorithms except DOS precede the
CRC by a separator '#' (#0023). Due to the limited number of
characters in a DOS file name a separator for the CRC is not used.

10. The new file identifier shall be translated to all upper case.

4.2.2.1.2 OS/2

Due to the restrictions imposed by the OS/2 operating system environment, on the
FileIdentifier associated with a file the following methodology shall be employed
to handle FileIdentifier(s) under the above-mentioned operating system
environment :

1. FileIdentifier Lookup: Upon request for a "lookUp" of a FileIdentifier,
a case-insensitive comparison shall be performed.

2. Validate FileIdentifer: If the FileIdentifier is a valid OS/2 file
identifier then do not apply the following steps.

3. Invalid Characters: A FileIdentifier that contains characters considered
invalid within an OS/2 file name, or not displayable in the current
environment shall have them translated into "_" (#005F). Multiple
sequential invalid or non-displayable characters shall be translated into
a single “_” (#005F) character. Reference the appendix on invalid
characters for a complete list.

4. Trailing Periods and Spaces: All trailing “.” (#002E) and “ “ (#0020)
shall be removed.

5. FileIdentifier CRC: Since through the above process character
information from the original FileIdentifier is lost the chance of
creating a duplicate FileIdentifier in the same directory increases. To
greatly reduce the chance of having a duplicate FileIdentifier the file
name shall be modified to contain a CRC of the original FileIdentifier.

OSTA Universal Disk Format Revision 1.0272

If there is a file extension then the new FileIdentifier shall be
composed of up to the first (254 - (length of (new file extension) + 1
(for the '.')) - 45 (for the #CRC)) characters constituting the file name
at this step in the process, followed by the separator '#' (#0023);
followed by a 34 digit CS0 Hex representation of the least significant
12 bits of the 16--bit CRC of the original CS0 FileIdentifier, followed
by '.' (#002E) and the file extension at this step in the process.

Otherwise if there is no file extension the new FileIdentifier shall be
composed of up to the first (254 - 45 (for the #CRC)) characters
constituting the file name at this step in the process. Followed by the
separator '#' (#0023); followed by a 34 digit CS0 Hex representation of
the least significant 12 bits of the 16-bit CRC of the original CS0
FileIdentifier.

4.2.2.1.3 Macintosh

Due to the restrictions imposed by the Macintosh operating system environment,
on the FileIdentifier associated with a file the following methodology shall be
employed to handle FileIdentifier(s) under the above-mentioned operating system
environment :

1. FileIdentifier Lookup: Upon request for a "lookUp" of a FileIdentifier,
a case-insensitive comparison shall be performed.

2. Validate FileIdentifer: If the FileIdentifier is a valid Macintosh file
identifier then do not apply the following steps.

3. Invalid Characters: A FileIdentifier that contains characters considered
invalid within a Macintosh file name, or not displayable in the current
environment, shall have them translated into "_" (#005F). Multiple
sequential invalid or non-displayable characters shall be translated into
a single “_” (#005F) character. Reference the appendix on invalid
characters for a complete list

4. Long FileIdentifier - In the event that the number of characters
constituting the FileIdentifier at this step in the process is greater than
31 (maximum name length for the Macintosh operating system), the
new FileIdentifier will consist of the first 2726 characters of the
FileIdentifier at this step in the process.

5. FileIdentifier CRC Since through the above process character
information from the original FileIdentifier is lost the chance of
creating a duplicate FileIdentifier in the same directory increases. To
greatly reduce the chance of having a duplicate FileIdentifier the file
name shall be modified to contain a CRC of the original FileIdentifier.

If there is a file extension then the new FileIdentifier shall be
composed of up to the first (31 - (length of (new file extension) + 1

OSTA Universal Disk Format Revision 1.0273

(for the '.')) - 45 (for the #CRC)) characters constituting the file name
at this step in the process, followed by the separator '#' (#0023);
followed by a 34 digit CS0 Hex representation of the least significant
12 bits of the 16--bit CRC of the original CS0 FileIdentifier, followed
by '.' (#002E) and the file extension at this step in the process.

Otherwise if there is no file extension the new FileIdentifier shall be
composed of up to the first (31 - 4 5(for the #CRC)) characters
constituting the file name at this step in the process. Followed by the
separator '#' (#0023); followed by a 34 digit CS0 Hex representation of
the least significant 12 bits of the 16-bit CRC of the original CS0
FileIdentifier.

4.2.2.1.4 Windows 95 & Windows NT
Due to the restrictions imposed by the Windows 95 and Windows NT operating
system environments, on the FileIdentifier associated with a file the following
methodology shall be employed to handle FileIdentifier(s) under the above-
mentioned operating system environment:

1. FileIdentifier Lookup: Upon request for a "lookUp" of a FileIdentifier,
a case-insensitive comparison shall be performed.

2. Validate FileIdentifer: If the FileIdentifier is a valid file identifier for
Windows 95 or Windows NT then do not apply the following steps.

3. Invalid Characters: A FileIdentifier that contains characters considered
invalid within a file name of the supported operating system, or not
displayable in the current environment shall have them translated into
"_" (#005F). Multiple sequential invalid or non-displayable characters
shall be translated into a single “_” (#005F) character. Reference the
appendix on invalid characters for a complete list.

4. Trailing Periods and Spaces: All trailing “.” (#002E) and “ “ (#0020)
shall be removed.

5. FileIdentifier CRC: Since through the above process character
information from the original FileIdentifier is lost the chance of
creating a duplicate FileIdentifier in the same directory increases. To
greatly reduce the chance of having a duplicate FileIdentifier the file
name shall be modified to contain a CRC of the original FileIdentifier.

If there is a file extension then the new FileIdentifier shall be
composed of up to the first (255 - (length of (new file extension) + 1
(for the '.')) - 5 (for the #CRC)) characters constituting the file name at
this step in the process, followed by the separator '#' (#0023); followed
by a 4 digit CS0 Hex representation of the 16-bit CRC of the original
CS0 FileIdentifier, followed by '.' (#002E) and the file extension at this
step in the process.

OSTA Universal Disk Format Revision 1.0274

Otherwise if there is no file extension the new FileIdentifier shall be
composed of up to the first (255 - 5 (for the #CRC)) characters
constituting the file name at this step in the process. Followed by the
separator '#' (#0023); followed by a 4 digit CS0 Hex representation of
the 16-bit CRC of the original CS0 FileIdentifier.

4.2.2.1.5 UNIX

Due to the restrictions imposed by UNIX operating system environments, on the
FileIdentifier associated with a file the following methodology shall be employed
to handle FileIdentifier(s) under the above-mentioned operating system
environment:

1. FileIdentifier Lookup: Upon request for a "lookUp" of a FileIdentifier,
a case-sensitive comparison shall be performed.

2. Validate FileIdentifer: If the FileIdentifier is a valid UNIX file
identifier for the current system environment then do not apply the
following steps.

3. Invalid Characters: A FileIdentifier that contains characters considered
invalid within a UNIX file name for the current system environment,
or not displayable in the current environment shall have them
translated into "_" (#005E). Multiple sequential invalid or non-
displayable characters shall be translated into a single “_” (#005E)
character. Reference the appendix on invalid characters for a complete
list

4. Long FileIdentifier - In the event that the number of characters
constituting the FileIdentifier at this step in the process is greater than
MAXNameLength (maximum name length for the specific UNIX
operating system), the new FileIdentifier will consist of the first
MAXNameLength-45 characters of the FileIdentifier at this step in the
process.

5. FileIdentifier CRC Since through the above process character
information from the original FileIdentifier is lost the chance of
creating a duplicate FileIdentifier in the same directory increases. To
greatly reduce the chance of having a duplicate FileIdentifier the file
name shall be modified to contain a CRC of the original FileIdentifier.

If there is a file extension then the new FileIdentifier shall be
composed of up to the first (MAXNameLength - (length of (new file
extension) + 1 (for the '.')) - 45 (for the #CRC)) characters constituting
the file name at this step in the process, followed by the separator '#'
(#0023); followed by a 34 digit CS0 Hex representation of the least
significant 12 bits of the 16-bit CRC of the original CS0 FileIdentifier,
followed by '.' (#002E) and the file extension at this step in the process.

OSTA Universal Disk Format Revision 1.0275

Otherwise if there is no file extension the new FileIdentifier shall be
composed of up to the first (MAXNameLength - 45 (for the #CRC))
characters constituting the file name at this step in the process.
Followed by the separator '#' (#0023); followed by a 34 digit CS0 Hex
representation of the least significant 12 bits of the 16-bit CRC of the
original CS0 FileIdentifier.

OSTA Universal Disk Format Revision 1.0276

5. Informative
5.1 Descriptor Lengths

The following table summarizes the UDF limitations on the lengths of the Descriptors
described in ISO 13346.

Descriptor Length
Anchor Volume Descriptor Pointer 512
Volume Descriptor Pointer 512
Implementation Use Volume Descriptor 512
Partition Descriptor 512
Logical Volume Descriptor no max
Unallocated Space Descriptor no max
Terminating Descriptor 512
Logical Volume Integrity Descriptor no max
File Set Descriptor 512
File Identifier Descriptor Maximum of a

Logical Block Size
Allocation Extent Descriptor 24
Indirect Entry 52
Terminal Entry 36
File Entry Maximum of a

Logical Block Size
Unallocated Space Entry Maximum of a

Logical Block Size
Space Bit Map Descriptor no max
Partition Integrity Entry N/A

5.2 Using Implementation Use Areas
5.2.1 Entity Identifiers

Refer to the section on Entity Identifiers defined earlier in this document.

5.2.2 Orphan Space

Orphan space may exist within a logical volume, but it is not recommended since
it may be reallocated by some type of logical volume repair facility. Orphan
space is defined as space that is not directly or indirectly referenced by any of the
non-implementation use descriptors defined in ISO 13346.

OSTA Universal Disk Format Revision 1.0277

NOTE: Any allocated extent for which the only reference resides within an
implementation use field is considered orphan space.

5.3 Boot Descriptor
Please refer to the "OSTA Native Implementation Specification" document for
information on the Boot Descriptor.

5.4 Technical Contacts
Technical questions regarding this document may be emailed to the OSTA
Technical Committee at info@osta @aol.comorg. Also technical questions may
be faxed to the attention of the OSTA Technical Committee at 1-805-962-1542.

OSTA may also be contacted through the following address:

Technical Committee Chairman
OSTA
311 East Carrillo Street
Santa Barbara, CA 93101
(805) 963-3853

Also monitor the OSTA web site at www.osta.org for additional information.

OSTA Universal Disk Format Revision 1.0278

6. Appendices

6.1 UDF Entity Identifier Definitions

Definitions

Entity Identifier Description
"*OSTA UDF Compliant" Indicates the contents of the specified logical volume or file set

is complaint with domain defined by this document.
“*UDF LV Info” Contains additional Logical Volume identification information.
"*UDF FreeEASpace" Contains free unused space within the implementation extended

attribute space.
“*UDF FreeAppEASpace” Contains free unused space within the application extended

attribute space.
“*UDF DVD CGMS Info” Contains DVD Copyright Management Information
"*UDF OS/2 EA" Contains OS/2 extended attribute data.
"*UDF OS/2 EALength" Contains OS/2 extended attribute length.
"*UDF Mac VolumeInfo" Contains Macintosh volume information.
"*UDF Mac FinderInfo" Contains Macintosh finder information.
"*UDF Mac UniqueIDTable" Contains Macintosh UniqueID Table which is used to map a

Unique ID to a File Entry.
"*UDF Mac ResourceFork" Contains Macintosh resource fork information.
“*UDF Virtual Partition” Describes UDF Virtual Partition
“*UDF Sparable Partition” Describes UDF Sparable Partition
“*UDF Virtual Alloc Tbl” Contains information for handling rewriting to sequentially

written media.
“*UDF Sparing Table” Contains information for handling defective areas on the media

OSTA Universal Disk Format Revision 1.0279

6.2 UDF Entity Identifier Values

Entity Identifier Byte Value
"*OSTA UDF Compliant" #2A, #4F, #53, #54, #41, #20, #55, #44, #46, #20, #43, #6F,

#6D, #70, #6C, #69, #61, #6E, #74
“*UDF LV Info” #2A, #55, #44, #46, #20, #4C, #56, #20, #49, #6E, #66, #6F
"*UDF FreeEASpace" #2A, #55, #44, #46, #20, #46, #72, #65, #65, #45, #41, #53, #70,

#61, #63, #65
"*UDF FreeAppEASpace" #2A, #55, #44, #46, #20,

#46, #72, #65, #65, #41, #70, #70,
#45, #41, #53, #70, #61, #63, #65

“*UDF DVD CGMS Info” #2A, #55, #44, #46, #20, #44, #56, #44, #20,
#43, #47, #4D, #53, #20, #49, #6E, #66, #6F

"*UDF OS/2 EA" #2A, #55, #44, #46, #41, #20, #45, #41
"*UDF OS/2 EALength" #2A, #55, #44, #46, #20, #45, #41, #4C, #65, #6E, #67, #74, #68
"*UDF Mac VolumeInfo" #2A, #55, #44, #46, #20, #4D, #61, #63, #20, #56, #6F, #6C,

#75, #6D, #65, #49, #6E, #66, #6F
"*UDF Mac FinderInfo" #2A, #55, #44, #46, #20, #4D, #61, #63, #20, #49, #69, #6E,

#64, #65, #72, #49, #6E, #66, #6F
"*UDF Mac UniqueIDTable" #2A, #55, #44, #46, #20, #4D, #61, #63, #20, #55, #6E, #69,

#71, #75, #65, #49, #44, #54, #61, #62, #6C, #65
"*UDF Mac ResourceFork" #2A, #55, #44, #46, #20, #4D, #61, #63, #20, #52, #65, #73,

#6F, #75, #72, #63, #65, #46, #6F, #72, #6B
“*UDF Virtual Partition” #2A, #55, #44, #46, #20, #56, #69, #72, #74, #75, #61, #6C,

#20, #50, #61, #72, #74, #69, #74, #69, #6F, #6E
“*UDF Sparable Partition” #2A, #55, #44, #46, #20, #53, #70, #61, #72, #61, #62, #6C,

#65, #20, #50, #61, #72, #74, #69, #74, #69, #6F, #6E
“*UDF Virtual Alloc Tbl” #2A, #55, #44, #46, #20, #56, #69, #72, #74, #75, #61, #6C,

#20, #41, #6C, #6C, #6F, #63, #20, #54, #62, #6C
“*UDF Sparing Table” #2A, #55, #44, #46, #20, #53, #70, #61, #72, #69, #6E, #67,

#20, #54, #61, #62, #6C, #65

OSTA Universal Disk Format Revision 1.0280

6.3 Operating System Identifiers
The following tables define the current allowable values for the OS Class and OS
Identifier fields in the IdentifierSuffix of Entity Identifiers.

The OS Class field will identify under which class of operating system the
specified descriptor was recorded. The valid values for this field are as follows:

Value Operating System Class
0 Undefined
1 DOS
2 OS/2
3 Macintosh OS
4 UNIX

5-255 ReservedWindows 9x
6 Windows NT

7-255 Reserved

The OS Identifier field will identify under which operating system the specified
descriptor was recorded. The valid values for this field are as follows:

OS
Class

OS
Identifier

Operating System Identified

0 Any Value Undefined
1 0 DOS/Windows 3.x
2 0 OS/2
3 0 Macintosh OS System 7
4 0 UNIX - Generic
4 1 UNIX - IBM AIX
4 2 UNIX - SUN OS / Solaris
4 3 UNIX - HP/UX
4 4 UNIX - Silicon Graphics Irix
4 5 UNIX - Linux
4 6 UNIX - MKLinux
4 7 UNIX - FreeBSD
5 0 Windows 95
6 0 Windows NT

For the most update list of values for OS Class and OS Identifier please contact OSTA
and request a copy of the UDF Entity Identifier Directory. This directory will also
contain Implementation Identifiers of ISVs who have provided the necessary information
to OSTA.

NOTE: If you wish to add to this list please contact the OSTA Technical Committee
Chairman at the OSTA address listed in section 5.3 Technical Contacts. Currently

OSTA Universal Disk Format Revision 1.0281

Windows 95,not all features of Windows NT and NetWare are notfully supported by
this specification, but OSTA has started the work on these operating systems.

OSTA Universal Disk Format Revision 1.0282

6.4 OSTA Compressed Unicode Algorithm

Algorithm
/***
* OSTA compliant Unicode compression, uncompression routines.
* Copyright 1995 Micro Design International, Inc.
* Written by Jason M. Rinn.
* Micro Design International gives permission for the free use of the
* following source code.
*/

#include <stddef.h>

/***
* The following two typedef's are to remove compiler dependancies.
* byte needs to be unsigned 8-bit, and unicode_t needs to be
* unsigned 16-bit.
*/

typedef unsigned short unicode_t;
typedef unsigned char byte;

/***
* Takes an OSTA CS0 compressed unicode name, and converts
* it to Unicode.
* The Unicode output will be in the byte order
* that the local compiler uses for 16-bit values.
* NOTE: This routine only performs error checking on the compID.
* It is up to the user to ensure that the unicode buffer is large
* enough, and that the compressed unicode name is correct.
*
* RETURN VALUE
*
* The number of unicode characters which were uncompressed.
* A -1 is returned if the compression ID is invalid.
*/

int UncompressUnicode(
int numberOfBytes, /* (Input) number of bytes read from media. */
byte *UDFCompressed, /* (Input) bytes read from media. */
unicode_t *unicode) /* (Output) uncompressed unicode characters. */
{

unsigned int compID;
int returnValue, unicodeIndex, byteIndex;

/* Use UDFCompressed to store current byte being read. */
compID = UDFCompressed[0];

/* First check for valid compID. */
if (compID != 8 && compID != 16)
{

returnValue = -1;
}
else
{

unicodeIndex = 0;
byteIndex = 1;

/* Loop through all the bytes. */
while (byteIndex < numberOfBytes)
{

if (compID == 16)
{
/*Move the first byte to the high bits of the unicode char. */
unicode[unicodeIndex] = UDFCompressed[byteIndex++] << 8;

}
else
{

unicode[unicodeIndex] = 0;
}
if (byteIndex < numberOfBytes)
{

OSTA Universal Disk Format Revision 1.0283

/*Then the next byte to the low bits. */
unicode[unicodeIndex] |= UDFCompressed[byteIndex++];

}
unicodeIndex++;

}
returnValue = unicodeIndex;

}
return(returnValue);

}

/***
* DESCRIPTION:
* Takes a string of unicode wide characters and returns an OSTA CS0
* compressed unicode string. The unicode MUST be in the byte order of
* the compiler in order to obtain correct results. Returns an error
* if the compression ID is invalid.
*
* NOTE: This routine assumes the implementation already knows, by
* the local environment, how many bits are appropriate and
* therefore does no checking to test if the input characters fit
* into that number of bits or not.
*
* RETURN VALUE
*
* The total number of bytes in the compressed OSTA CS0 string,
* including the compression ID.
* A -1 is returned if the compression ID is invalid.
*/

int CompressUnicode(
int numberOfChars, /* (Input) number of unicode characters. */
int compID, /* (Input) compression ID to be used. */
unicode_t *unicode, /* (Input) unicode characters to compress. */
byte *UDFCompressed) /* (Output) compressed string, as bytes. */
{

int byteIndex, unicodeIndex;

if (compID != 8 && compID != 16)
{

byteIndex = -1; /* Unsupported compression ID ! */
}
else
{

/* Place compression code in first byte. */
UDFCompressed[0] = compID;

byteIndex = 1;
unicodeIndex = 0;
while (unicodeIndex < numberOfChars)
{

if (compID == 16)
{

/* First, place the high bits of the char
* into the byte stream.
*/

UDFCompressed[byteIndex++] =
(unicode[unicodeIndex] & 0xFF00) >> 8;

}
/*Then place the low bits into the stream. */
UDFCompressed[byteIndex++] = unicode[unicodeIndex] & 0x00FF;
unicodeIndex++;

}
}

return(byteIndex);
}

OSTA Universal Disk Format Revision 1.0284

6.5 CRC Calculation

The following C program may be used to calculate the CRC-CCITT checksum
used in the TAG descriptors of ISO/IEC 13346.

/*
* CRC 010041
*/

static unsigned short crc_table[256] = {
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,
0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,
0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,
0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,
0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485,
0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,
0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,
0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,
0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12,
0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,
0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49,
0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70,
0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78,
0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F,
0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E,
0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D,
0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C,
0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB,
0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,
0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A,
0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,
0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9,
0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,
0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8,
0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0

};

unsigned short
cksum(s, n)

register unsigned char *s;
register int n;

{
register unsigned short crc=0;

while (n-- > 0)
crc = crc_table[(crc>>8 ^ *s++) & 0xff] ^ (crc<<8);

return crc;
}

#ifdef MAIN
unsigned char bytes[] = { 0x70, 0x6A, 0x77 };

main()
{

unsigned short x;

x = cksum(bytes, sizeof bytes);
printf("checksum: calculated=%4.4x, correct=%4.4x\en", x, 0x3299);
exit(0);

}
#endif

OSTA Universal Disk Format Revision 1.0285

The CRC table in the previous listing was generated by the following program:

#include <stdio.h>

/*
* a.out 010041 for CRC-CCITT
*/

main(argc, argv)
int argc; char *argv[];

{
unsigned long crc, poly;
int n, i;

sscanf(argv[1], "%lo", &poly);
if(poly & 0xffff0000){

fprintf(stderr, "polynomial is too large\en");
exit(1);

}

printf("/*\en * CRC 0%o\en */\en", poly);
printf("static unsigned short crc_table[256] = {\en");
for(n = 0; n < 256; n++){

if(n % 8 == 0)
printf(" ");

crc = n << 8;
for(i = 0; i < 8; i++){

if(crc & 0x8000)
crc = (crc << 1) ^ poly;

else
crc <<= 1;

crc &= 0xFFFF;
}
if(n == 255)

printf("0x%04X ", crc);
else

printf("0x%04X, ", crc);
if(n % 8 == 7)

printf("\en");
}
printf("};\en");
exit(0);

}

All the above CRC code was devised by Don P. Mitchell of AT&T Bell Laboratories and
Ned W. Rhodes of Software Systems Group.
It has been published in "Design and Validation of Computer Protocols",,"
Prentice Hall, Englewood Cliffs, NJ, 1991, Chapter 3, ISBN 0-13-539925-4.
Copyright is held by AT&T.

AT&T gives permission for the free use of the above source code.

OSTA Universal Disk Format Revision 1.0286

6.6 Algorithm for Strategy Type 4096
This section describes a strategy for constructing an ICB hierarchy. For strategy type
4096 the root ICB hierarchy shall contain 1 direct entry and 1 indirect entry. To indicate
that there is 1 direct entry a 1 shall be recorded as a Uint16 in the StrategyParameter
field of the ICB Tag field. A value of 2 shall be recorded in the
MaximumNumberOfEntries field of the ICB Tag field.

The indirect entry shall specify the address of another ICB which shall also contain 1
direct entry and 1 indirect entry, where the indirect entry specifies the address of another
ICB of the same type. See the figure below:

NOTE: This strategy builds an ICB hierarchy that is a simple linked list of direct entries.

DEIE

DEIE

DEIE

OSTA Universal Disk Format Revision 1.0287

6.7 Identifier Translation Algorithms
The following sample source code examples implement the file identifier translation
algorithms described in this document.

The following basic algorithms may also be used to handle OS specific translations of the
VolumeIdentifier, VolumeSetIdentifier, LogicalVolumeID and FileSetID.

6.7.1 DOS Algorithm
Algorithm

/***
* OSTA UDF compliant file name translation routine for DOS.
* Copyright 1995 Micro Design International, Inc.
* Written by Jason M. Rinn.
* Micro Design International gives permission for the free use of the
* following source code.
*/

#include <stddef.h>

#define DOS_NAME_LEN 8
#define DOS_EXT_LEN 3
#define ILLEGAL_CHAR_MARK 0x005F
#define CRC_MARK 0x0023
#define TRUE 1
#define FALSE 0
#define PERIOD 0x002E
#define SPACE 0x0020

/***
* The following two typedef's are to remove compiler dependancies.
* byte needs to be unsigned 8-bit, and unicode_t needs to
* be unsigned 16-bit.
*/

typedef unsigned short unicode_t;
typedef unsigned char byte;

/*** PROTOTYPES ***/
unsigned short cksum(register unsigned char *s, register int n);
int IsIllegal(unicode_t current);

/* Define functions or macros to both determine if a character
* is printable and compute the uppercase version of a character
* under your implementation.
*/

int UnicodeIsPrint(unicode_t);
unicode_t UnicodeToUpper(unicode_t);

/***
* Translate udfName to dosName using OSTA compliant.
* dosName must be a unicode string with min length of 12.
*
* RETURN VALUE
* Number of unicode characters in dosName.
*/

int UDFDOSName(
unicode_t *dosName, /* (Output)DOS compatible name. */
unicode_t *udfName, /* (Input) Name from UDF volume. */
int udfLen, /* (Input) Length of UDF Name. */
byte *fidName, /* (Input) Bytes as read from media */
int fidNameLen)/* (Input) Number of bytes in fidName.*/
{

int index, dosIndex = 0, extIndex = 0, lastPeriodIndex;

OSTA Universal Disk Format Revision 1.0288

int needsCRC = FALSE, hasExt = FALSE, writingExt = FALSE;
unsigned short valueCRC;
unicode_t ext[DOS_EXT_LEN], current;

/*Used to convert hex digits. Used ASCII for readability. */
const char hexChar[] = "0123456789ABCDEF";

for (index = 0 ; index < udfLen ; index++)
{

current = udfName[index];
current = UnicodeToUpper(current);

if (current == PERIOD)
{

if (dosIndex==0 || hasExt)
{

/* Ignore leading periods or any other than
* used for extension.
*/

needsCRC = TRUE;
}
else
{

/* First, find last character which is NOT a period
* or space.
*/

lastPeriodIndex = udfLen - 1;
while(lastPeriodIndex >=0 &&

(udfName[lastPeriodIndex]== PERIOD ||
udfName[lastPeriodIndex] == SPACE))

{
lastPeriodIndex--;

}

/* Now search for last remaining period. */
while(lastPeriodIndex >= 0 &&

udfName[lastPeriodIndex] != PERIOD)
{

lastPeriodIndex--;
}

/* See if the period we found was the last or not. */
if (lastPeriodIndex != index)
{

needsCRC = TRUE; /* If not, name needs translation. */
}

/* As long as the period was not trailing,
* the file name has an extension.
*/

if (lastPeriodIndex >= 0)
{

hasExt = TRUE;
}

}
}
else
{

if ((!hasExt && dosIndex == DOS_NAME_LEN) ||
extIndex == DOS_EXT_LEN)

{
/* File name or extension is too long for DOS. */
needsCRC = TRUE;

}
else
{

if (current == SPACE) /* Ignore spaces. */
{

needsCRC = TRUE;
}
else

OSTA Universal Disk Format Revision 1.0289

{
/* Look for illegal or unprintable characters. */
if (IsIllegal(current) || !UnicodeIsPrint(current))
{

needsCRC = TRUE;
current = ILLEGAL_CHAR_MARK;
/* Skip Illegal characters(even spaces),
* but not periods.
*/

while(index+1 < udfLen
&& (IsIllegal(udfName[index+1])
|| !UnicodeIsPrint(udfName[index+1]))
&& udfName[index+1] != PERIOD)

{
index++;

}
}

/* Add current char to either file name or ext. */
if (writingExt)
{

ext[extIndex++] = current;
}
else
{

dosName[dosIndex++] = current;
}

}
}

}
/* See if we are done with file name, either because we reached
* the end of the file name length, or the final period.
*/

if (!writingExt && hasExt && (dosIndex == DOS_NAME_LEN ||
index == lastPeriodIndex))

{
/* If so, and the name has an extension, start reading it. */
writingExt = TRUE;
/* Extension starts after last period. */
index = lastPeriodIndex;

}
}

/*Now handle CRC if needed. */
if (needsCRC)
{

/* Add CRC to end of file name or at position 4. */
if (dosIndex >4)
{

dosIndex = 4;
}

dosName[dosIndex++] = CRC_MARK;
valueCRC = cksum(fidName, fidNameLen);

/* Convert lower 1216-bits of CRC to hex characters. */
dosName[dosIndex++] = hexChar[(valueCRC & 0xf000) >> 12]
dosName[dosIndex++] = hexChar[(valueCRC & 0x0f00) >> 8];
dosName[dosIndex++] = hexChar[(valueCRC & 0x00f0) >> 4];
dosName[dosIndex++] = hexChar[(valueCRC & 0x000f)];

}

/* Add extension, if any. */
if (extIndex != 0)
{

dosName[dosIndex++] = PERIOD;
for (index = 0; index < extIndex; index++)
{

dosName[dosIndex++] = ext[index];
}

}

OSTA Universal Disk Format Revision 1.0290

return(dosIndex);
}

/***
* Decides if a Unicode character matches one of a list
* of ASCII characters.
* Used by DOS version of IsIllegal for readability, since all of the
* illegal characters above 0x0020 are in the ASCII subset of Unicode.
* Works very similarly to the standard C function strchr().
*
* RETURN VALUE
*
* Non-zero if the Unicode character is in the given ASCII string.
*/

int UnicodeInString(
unsigned char *string, /* (Input) String to search through. */
unicode_t ch) /* (Input) Unicode char to search for. */
{

int found = FALSE;
while (*string != '\0' && found == FALSE)
{

/* These types should compare, since both are unsigned numbers. */
if (*string == ch)
{

found = TRUE;
}
string++;

}
return(found);

}

/***
* Decides whether character passed is an illegal character for a
* DOS file name.
*
* RETURN VALUE
*
* Non-zero if file character is illegal.
*/

int IsIllegal(
unicode_t ch) /* (Input) character to test. */
{

/* Genuine illegal char's for DOS. */
if (ch < 0x20 || UnicodeInString("\\/:*?\"<>|", ch))
{

return(1);
}
else
{

return(0);
}

}

OSTA Universal Disk Format Revision 1.0291

6.7.2 OS/2 , Macintosh,Windows 95, Windows NT and UNIX
Algorithm
/***
* OSTA UDF compliant file name translation routine for OS/2,
* Windows 95, Windows NT, Macintosh and UNIX.
* Copyright 1995 Micro Design International, Inc.
* Written by Jason M. Rinn.
* Micro Design International gives permission for the free use of the
* following source code.
*/

/***
* To use these routines with different operating systems.
*
* OS/2
* Define OS2
* Define MAXLEN = 254
*
* Windows 95
* Define WIN_95
* Define MAXLEN = 255
*
* Windows NT
* Define WIN_NT
* Define MAXLEN = 255
*
* Macintosh:
* Define MAC.
* Define MAXLEN = 31.
*
* UNIX
* Define UNIX.
* Define MAXLEN as specified by unix version.
*/

#define ILLEGAL_CHAR_MARK 0x005F
#define CRC_MARK 0x0023
#define EXT_SIZE 5
#define TRUE 1
#define FALSE 0
#define PERIOD 0x002E
#define SPACE 0x0020

/***
* The following two typedef's are to remove compiler dependancies.
* byte needs to be unsigned 8-bit, and unicode_t needs to
* be unsigned 16-bit.
*/

typedef unsigned int unicode_t;
typedef unsigned char byte;

/*** PROTOTYPES ***/
int IsIllegal(unicode_t ch);
unsigned short cksum(unsigned char *s, int n);

/* Define a function or macro which determines if a Unicode character is
* printable under your implementation.
*/

int UnicodeIsPrint(unicode_t);

/***
* Translates a long file name to one using a MAXLEN and an illegal
* char set in accord with the OSTA requirements. Assumes the name has
* already been translated to Unicode.
*
* RETURN VALUE
*
* Number of unicode characters in translated name.
*/

OSTA Universal Disk Format Revision 1.0292

int UDFTransName(
unicode_t *newName,/*(Output)Translated name. Must be of length MAXLEN*/
unicode_t *udfName, /* (Input) Name from UDF volume.*/
int udfLen, /* (Input) Length of UDF Name. */
byte *fidName, /* (Input) Bytes as read from media. */
int fidNameLen) /* (Input) Number of bytes in fidName. */
{

int index, newIndex = 0, needsCRC = FALSE;
int extIndex, newExtIndex = 0, hasExt = FALSE;

#ifdef (OS2 | WIN_95 | WIN_NT)
int trailIndex = 0;

#endif
unsigned short valueCRC;
unicode_t current;
const char hexChar[] = "0123456789ABCDEF";

for (index = 0; index < udfLen; index++)
{

current = udfName[index];

if (IsIllegal(current) || !UnicodeIsPrint(current))
{

needsCRC = TRUE;
/* Replace Illegal and non-displayable chars with underscore. */
current = ILLEGAL_CHAR_MARK;
/* Skip any other illegal or non-displayable characters. */
while(index+1 < udfLen && (IsIllegal(udfName[index+1])

|| !UnicodeIsPrint(udfName[index+1])))
{

index++;
}

}

/* Record position of extension, if one is found. */
if (current == PERIOD && (udfLen - index -1) <= EXT_SIZE)
{

if (udfLen == index + 1)
{

/* A trailing period is NOT an extension. */
hasExt = FALSE;

}
else
{

hasExt = TRUE;
extIndex = index;
newExtIndex = newIndex;

}
}

#ifdef (OS2 | WIN_95 | WIN_NT)
/* Record position of last char which is NOT period or space. */
else if (current != PERIOD && current != SPACE)
{

trailIndex = newIndex;
}

#endif

if (newIndex < MAXLEN)
{

newName[newIndex++] = current;
}
else
{

needsCRC = TRUE;
}

}

#ifdef (OS2 | WIN_95 | WIN_NT)
/* For OS2, 95 & NT, truncate any trailing periods and\or spaces. */
if (trailIndex != newIndex - 1)
{

newIndex = trailIndex + 1;

OSTA Universal Disk Format Revision 1.0293

needsCRC = TRUE;
hasExt = FALSE; /* Trailing period does not make an extension. */

}
#endif

if (needsCRC)
{

unicode_t ext[EXT_SIZE];
int localExtIndex = 0;
if (hasExt)
{

int maxFilenameLen;
/* Translate extension, and store it in ext. */
for(index = 0; index<EXT_SIZE && extIndex + index +1 < udfLen;

index++)
{

current = udfName[extIndex + index + 1];

if (IsIllegal(current) || !isprint(current))
{

needsCRC = 1;
/* Replace Illegal and non-displayable chars
* with underscore.
*/
current = ILLEGAL_CHAR_MARK;
/* Skip any other illegal or non-displayable
* characters.
*/
while(index + 1 < EXT_SIZE

&& (IsIllegal(udfName[extIndex + index + 2])
|| !isprint(udfName[extIndex + index + 2])))

{
index++;

}
}
ext[localExtIndex++] = current;

}

/* Truncate filename to leave room for extension and CRC. */
maxFilenameLen = ((MAXLEN - 4) - localExtIndex - 1);
if (newIndex > maxFilenameLen)
{

newIndex = maxFilenameLen;
}
else
{

newIndex = newExtIndex;
}

}
else if (newIndex > MAXLEN - 45)
{

/*If no extension, make sure to leave room for CRC. */
newIndex = MAXLEN - 45;

}
newName[newIndex++] = CRC_MARK; /* Add mark for CRC. */

/*Calculate CRC from original filename from FileIdentifier. */
valueCRC = cksum(fidName, fidNameLen);
/* Convert lower 1216-bits of CRC to hex characters. */
newName[newIndex++] = hexChar[(valueCRC & 0xf000) >> 12];
newName[newIndex++] = hexChar[(valueCRC & 0x0f00) >> 8];
newName[newIndex++] = hexChar[(valueCRC & 0x00f0) >> 4];
newName[newIndex++] = hexChar[(valueCRC & 0x000f)];

/* Place a translated extension at end, if found. */
if (hasExt)
{

newName[newIndex++] = PERIOD;
for (index = 0;index < localExtIndex ;index++)
{

newName[newIndex++] = ext[index];

OSTA Universal Disk Format Revision 1.0294

}
}

}
return(newIndex);

}

#ifdef (OS2 | WIN_95 | WIN_NT)
/***
* Decides if a Unicode character matches one of a list
* of ASCII characters.
* Used by OS2 version of IsIllegal for readability, since all of the
* illegal characters above 0x0020 are in the ASCII subset of Unicode.
* Works very similarly to the standard C function strchr().
*
* RETURN VALUE
*
* Non-zero if the Unicode character is in the given ASCII string.
*/

int UnicodeInString(
unsigned char *string, /* (Input) String to search through. */
unicode_t ch) /* (Input) Unicode char to search for. */
{

int found = FALSE;
while (*string != '\0' && found == FALSE)
{

/* These types should compare, since both are unsigned numbers. */
if (*string == ch)
{

found = TRUE;
}
string++;

}
return(found);

}
#endif /* OS2 */

/***
* Decides whether the given character is illegal for a given OS.
*
* RETURN VALUE
*
* Non-zero if char is illegal.
*/

int IsIllegal(unicode_t ch)
{
#ifdef MAC

/* Only illegal character on the MAC is the colon. */
if (ch == 0x003A)
{

return(1);
}
else
{

return(0);
}

#elif defined UNIX
/* Illegal UNIX characters are NULL and slash. */
if (ch == 0x0000 || ch == 0x002F)
{

return(1);
}
else
{

return(0);
}

#elif defined (OS2 | WIN_95 | WIN_NT)
/* Illegal char's for OS/2 according to WARP toolkit. */
if (ch < 0x0020 || UnicodeInString("\\/:*?\"<>|", ch))
{

return(1);

OSTA Universal Disk Format Revision 1.0295

}
else
{

return(0);
}

#endif
}

OSTA Universal Disk Format Revision 1.0296

6.8 Extended Attribute Checksum Algorithm

Algorithm

/*
* Calculates a 16-bit checksum of the Implementation Use
* Extended Attribute header. The fields AttributeType
* through ImplementationIdentifier inclusively represent the
* data covered by the checksum (48 bytes).
*
*/

Uint16 ComputeEAChecksum(byte *data)
{

Uint16 checksum = 0;
Uint count;

for(count = 0; count < 48; count++)
{

checksum += *data++;
}

return(checksum);
}

OSTA Universal Disk Format Revision 1.0297

6.9 Requirements for DVD-ROM
This appendix defines the requirements and restrictions for UDF formatted DVD-ROM
discs.

• DVD-ROM discs shall be mastered with the UDF file system

• DVD-ROM discs shall consist of a single volume and a single partition.

NOTE:. The disc may also include the ISO 9660 file system. If the disc contains both
UDF and ISO 9660 file systems it shall be known as a UDF Bridge disc. This UDF
Bridge disc will allow playing DVD-ROM media in computers immediately which may
only support ISO 9660. As UDF computer implementations are provided, the need for
ISO 9660 will disappear, and future discs should contain only UDF.

If you intend to do any DVD development with UDF, please make sure that you fill out
the OSTA UDF Developer Registration Form located in appendix 6.11. For planned
operating system, check the Other box and write in DVD.

6.9.1 Constraints imposed by UDF for DVD-Video-Video
This section describes the restrictions and requirements for UDF formatted DVD-Video
discs for dedicated DVD content players. DVD-Video is one specific application of
DVD-ROM using the UDF format for the home consumer market. Due to limited
computing resources within a DVD player, restrictions and requirements were created so
that a DVD player would not have to support every feature of the UDF specification.

All DVD-Video discs shall be mastered to contain all required data as specified by ISO
13346 and UDF. This will allowease playing of DVD-Video in computer systems.
Examples of such data include the time, date, permission bits, and a free space map
(indicating no free space). While DVD player implementations may ignore these fields, a
UDF computer system implementation will not. Both entertainment-based and computer-
based content can reside on the same disc.

In an attempt to reduce code size and improve performance, all division described is
integer arithmetic; all denominators shall be 2^n, such that all divisions may be carried
out via logical shift operations.

• A DVD player shall only support UDF and not ISO 9660.

• Originating systems shall constrain individual files to be less than than or equal to 230

- Logical Block Size bytes in length.

• The data of each file shall be recorded as a single extent. Each File Entry shall be
recorded using the ICB Strategy Type 4.

• File and directory names shall be compressed as 8 bits per character using OSTA
Compressed Unicode format .

OSTA Universal Disk Format Revision 1.0298

• A DVD player shall not be required to follow symbolic links to any files.

• The DVD-Video files shall be stored in a subdirectory named "VIDEO_TS" directly
under the root directory. Directory names are standardized in the DVD Specifications
for Read-Only Disc document.

 NOTE: The DVD Specifications for Read-Only Disc is a document, developed by
the DVD Consortium, that describes the names of all DVD-Video files and a DVD-
Video directory which will be stored on the media, and additionally describes the
contents of the DVD-Video files.

• The file named "VIDEO_TS.IFO" in the VIDEO_TS subdirectory shall be read first.

All the above constraints apply only to the directory and files which the DVD player
needs to access. There may be other files and directories on the media which are not
intended for the DVD player and do not meet the above listed constraints. These other
files and directories are ignored by the DVD player. This is what enables the ability to
have both entertainment-based and computer-based content on the same disc.

6.9.2 How to read a UDF disc
This section describes the basic procedures that a DVD player would go through to read a
UDF formatted DVD-Video disc.

6.9.2.1 PROCEDUREStep 1. Volume Recognition Sequence
Find a NSRISO 13346 Descriptor in a volume recognition area which shall start at
logical sector 16.

6.9.2.2 PROCEDUREStep 2. Anchor Volume Descriptor Pointer
The Anchor Volume Descriptor Pointer which is located at an anchor point must be
found. Duplicate anchor points shall be recorded at logical sector 256 and logical
sector n, where n is the highest numbered logical sector on the disc.

A DVD player only needs to look at logical sector 256; the copy at logical sector n is
redundant and only needed for defect tolerance. The Anchor Volume Descriptor
Pointer contains three things of interest:

1. Static structures that may be used to identify and verify integrity of the disc.
2. Location of the Main Volume Descriptor Sequence (absolute logical sector

number)
3. Length of the Main Volume Descriptor Sequence (bytes)

The data located in bytes 0-3 and 5 of the Anchor Volume Descriptor Pointer may be
used for format verification if desired. Verifying the checksum in byte 4 and CRC in
bytes 8-11 are good additional verifications to perform. MVDS_Location and
MVDS_Length are read from this structure.

6.9.2.3 PROCEDUREStep 3. Volume Descriptor Sequence
Read logical sectors:

OSTA Universal Disk Format Revision 1.0299

MVDS_Location through MVDS_Location + (MVDS_Length - 1) / SectorSize

The logical sector size shall be 2048 bytes for DVD media. If this sequence can not
be read, a Reserve Volume Descriptor Sequence should be read.

The Partition Descriptor shall be a descriptor with a tag identifier of 5. The partition
number and partition location shall be recorded in logical sector number.

Partition_Location and Partition_Length are obtained from this structure.

The Logical Volume Descriptor shall be a descriptor with a tag identifier of 6. The
location and length of the File Set Descriptor shall be recorded in logical block
number.

FSD_Location, and FSD_Length are returned from this structure.

6.9.2.4 PROCEDUREStep 4. File Set Descriptor
The File Set Descriptor is located at logical sector numbers:

Partition_Location + FSD_Location through
Partition_Location + FSD_Location + (FSD_Length - 1) / BlockSize

RootDir_Location and RootDir_Length shall be read from the File Set Descriptor in
logical block number.

6.9.2.5 PROCEDUREStep 5. Root Directory File Entry
RootDir_Location and RootDir_Length define the location of a File Entry. The File
Entry describes the data space and permissions of the root directory.

The location and length of the Root Directory is returned.

6.9.2.6 PROCEDUREStep 6. Root Directory
Parse the data in the root directory extent to find the VIDEO_TS subdirectory.

Find the VIDEO_TS File Identifier Descriptor. The name shall be in 8 bit
compressed UDF format. Verify that VIDEO_TS is a directory.

Read the File Identifier Descriptor and find the location and length of a File Entry
describing the VIDEO_TS directory.

6.9.2.7 PROCEDUREStep 7. File Entry of VIDEO_TS
The File Entry found in the step above describes the data space and permissions of
the VIDEO_TS directory.

The location and length of the VIDEO_TS directory is returned.

OSTA Universal Disk Format Revision 1.02100

6.9.2.8 PROCEDUREStep 8. VIDEO_TS directory
The extent found in the step above contains sets of File Identifier Descriptors. In this
pass, verify that the entry points to a file and is named VIDEO_TS.IFO.

6.9.2.9 PROCEDUREStep 9. File Entry of VIDEO_TS.IFO
The File Entry found in the step above describes the data space and permissions of
the VIDEO_TS.IFO file.

The location and length of the VIDEO_TS.IFO file is returned.

Further files can be found in the same manner as the VIDEO_TS.IFO file when
needed.

6.9.3 Obtaining DVD Documents
Documents

To obtain a copy of the DVD Specifications for Read-Only Disc document as well as
other DVD related material, contact the following person:

Toshiba Corporation
Toshiba BLDG. 13D
DVD Division
1-1 Shibaura 1-Chome, Minato-ku, Tokyo 105-01, JAPAN
Mr. Y. Mizutani
E-mail: 000092030295@tg-mail.toshiba.co.jp

OSTA Universal Disk Format Revision 1.02101

6.10 Recommendations for CD Media
CD Media (CD-R and CD-RW) requires special consideration due to its nature. CD was
originally designed for read-only applications which affects the way in which it is
written. The following guidelines are established to ensure interchange.

The VAT may be located by using READ TRACK INFORMATION (for unfinished
media) or READ TOC or READ CD RECORDED CAPACITY for finished media. See
X3T10-1048D (SCSI-3 Multi Media Commands).

Each file and directory shall be described by a single direct ICB. The ICB should be
written after the file data to allow for data underruns during writing, which will cause
logical gaps in the file data. The ICB can be written afterward which will correctly
identify all extents of the file data. The ICB shall be written in the data track, the file
system track (if it exists), or both.

6.10.1 Use of UDF on CD-R media
ISO 13346 requires an Anchor Volume Descriptor Pointer (AVDP) at sector 256 and
either N or (N - 256), where n is the last recorded Physical Address on the media. UDF
requires that the AVDP be recorded at both sector 256 and sector (N - 256) when each
session is closed. The file system may be in an intermediate state before closing and still
be interchangeable, but not strictly in compliance with ISO 13346. In the intermediate
state, only one AVDP exists. It should exist at sector 256, but if this is not possible due
to a track reservation, it shall exist at sector 512.

Implementations should place file system control structures into virtual space and file
data into real space. Reader implementations may cache the entire VAT; the size of the
VAT should be considered by any UDF originating software. Computer based
implemenations are expected to handle VAT sizes of at least 64K bytes; dedicated player
implementations may handle only smaller sizes.

6.10.1.1 Requirements
• Writing shall use Mode 1 or Mode 2 Form 1 sectors. On one disc, either Mode 1 or

Mode 2 Form 1 shall be used; a mixture of Mode 1 and Mode 2 Form 1 sectors on
one disc is not allowed.

• If Mode 2 Form 1 is used, then the subheader bytes of all sectors used by the user
data files and by the UDF structures shall have the following value:

File number = 0
Channel number = 0
Submode = 08h
Coding information = 0

OSTA Universal Disk Format Revision 1.02102

• An intermediate state is allowed on CD-R media in which only one AVDP is
recorded; this single AVDP shall be at sector 256 or sector 512 and according to the
multisession rules below.

• Sequential file system writing shall be performed with variable packet writing. This
allows maximum space efficiency for large and small updates. Variable packet
writing is more compatible with CD-ROM drives as current models do not support
method 2 addressing required by fixed packets.

• The Logical Volume Integrity descriptor shall be recorded and the volume marked as
open. Logical volume integrity can be verified by finding the VAT ICB at the last
recorded Physical Address. If the VAT ICB is present, the volume is clean; otherwise
it is dirty.

• The Partition Header descriptor, if recorded, shall specify no Unallocated Space
Table, no Unallocated Space Bitmap, no Partition Integrity Table, no Freed Space
Table, and no Freed Space Bitmap. The drive is capable of reporting free space
directly, eliminating the need for a separate descriptor.

• Each surface shall contain 0 or 1 read only partitions, 0 or 1 write once partitions, and
0 or 1 virtual partitions. CD media should contain 1 write once partition and 1 virtual
partition.

6.10.1.2 “Bridge” formats
ISO 9660 requires a Primary Volume Descriptor (PVD) at sector 16. If an ISO 9660 file
system is desired, it may contain references to the same files as those referenced by ISO
13346 structures, or reference a different set of files, or a combination of the two.

It is assumed that early implementations will record some ISO 9660 structures but that as
implementations of UDF become available, the need for ISO 9660 structures will
decrease.

If an ISO 9660 bridge disc contains Mode 2 Form 1 sectors, then the CD-ROM XA
extensions of ISO 9660 must be used.

6.10.1.3 End of session data
A session is closed to enable reading by CD-ROM drives. The last complete session on
the disc shall conform completely to ISO 13346 and have two AVDPs recorded. This
shall be accomplished by writing data according to End of session data table below.
Although not shown in the following example, the data may be written in multiple
packets.

OSTA Universal Disk Format Revision 1.02103

End of session data
Count Description

1 Anchor Volume Descriptor Pointer
255 Implementation specific. May contain user

data, file system structures, and/or link areas.
1 VAT ICB.

The implementation specific data may contain repeated copies of the VAT and VAT ICB.
Compatibility with drives that do not accurately report the location of the last sector will
be enhanced. Implementations shall ensure that enough space is available to record the
end of session data. Recording the end of session data brings a volume into compliance
with ISO 13346.

6.10.2 Use of UDF on CD-RW media
CD-RW media is randomly readable and block writable. This means that while any
individual sector may be read, writing must occur in blocks containing multiple sectors.
CD-RW systems do not provide for sparing of bad areas. Writing rules and sparing
mechanisms have been defined.

6.10.2.1 Requirements
• Writing which conforms to this section of the standard shall be performed using fixed

length packets.

• Writing shall be performed using Mode 1 or Mode 2, Form 1 sectors. On one disc,
either Mode 1 or Mode 2 Form 1 shall be used.

• If Mode 2 Form 1 is used, then the subheader bytes of all sectors used by the user
data files and by the UDF structures shall have the following value:

File number = 0
Channel number = 0
Submode = 08h
Coding information = 0

OSTA Universal Disk Format Revision 1.02104

• The host shall perform read/modify/write to enable the apparent writing of single 2K
sectors.

• The packet length shall be set when the disc is formatted. The packet length shall be
32 sectors (64 KB).

• The host shall maintain a list of defects on the disc using a Non-Allocatable Space
List (see 2.3.13).

• Sparing shall be managed by the host via the sparable partition and a sparing table.

• Discs shall be formatted prior to use.

6.10.2.2 Formatting
Formatting shall consist of writing a lead-in, user data area, and lead-out. These areas
may be written in any order. This physical format may be followed by a verification
pass. Defects found during the verification pass shall be enumerated in the Non-
Allocatable Space list (2.3.13). Finally, file system root structures shall be recorded.
These mandatory file system and root structures include the Volume Recognition
Sequence, Anchor Volume Descriptor Pointers, a Volume Descriptor Sequence, a File
Set Descriptor and a Root Directory.
The Anchor Volume Descriptor Pointers shall be recorded at sectors 256 and N - 256,
where N is the Physical Address of the last addressable sector.
Allocation for sparing shall occur during the format process. The sparing allocation may
be zero in length.
The free space descriptors shall be recorded and shall reflect space allocated to defective
areas and sector sparing areas.
The format may include all available space on the medium. However, if requested by the
user, a subset may be formatted to save formatting time. That smaller format may be
later “grown” to the full available space.

OSTA Universal Disk Format Revision 1.02105

6.10.2.3 Growing the Format
If the medium is partially formatted, it may be later grown to a larger size. This
operation consists of:
• Optionally erase the lead-in of the last session.

• Optionally erase the lead-out of the last session.

• Write packets beginning immediately after the last previously recorded packet.

• Update the sparing table to reflect any new spare areas

• Adjust the partition map as appropriate

• Update the free space map to show new available area

• Move the last AVDP to the new N - 256

• Write the lead-in (which reflects the new track size)

• Write the lead-out

6.10.2.4 Host Based Defect Management
The host shall perform defect management operations. The CD format was defined
without any defect management; to be compatible with existing technology and
components, the host must manage defects. There are two levels of defect management:
Marking bad sectors at format time and on-line sparing. The host shall keep the tables on
the media current.

6.10.2.5 Read Modify Write Operation
CD-RW media requires large writable units, as each unit incurs a 14KB overhead. The
file system requires a 2KB writable unit. The difference in write sizes is handled by a
read-modify-write operation by the host. An entire packet is read, the appropriate
portions are modified, and the entire packet written to the CD.
Note that packets may not be aligned to 32 sector boundaries.

6.10.2.6 Levels of Compliance
6.10.2.6.1 Level 1
The disc shall be formatted with exactly one lead-in, program area, and lead-out. The
program area shall contain exactly one track. The start of the partition shall be on a
packet boundary. The partition length shall be an integral multiple of the packet size.

6.10.2.6.2 Level 2
The last session shall contain the UDF file system. All prior sessions shall be contained
in one read-only partition.

OSTA Universal Disk Format Revision 1.02106

6.10.2.6.3 Level 3
No restrictions shall apply.

6.10.3 Multisession and Mixed Mode
The Volume Recognition Sequence and Anchor Volume Descriptor Pointer locations are
specified by ISO 13346 to be at a location relative to the beginning of the disc. The
beginning of a disc shall be determined from a base address S for the purposes of finding
the VRS and AVDP.
‘S’ is the Physical Address of the first data sector in the first recorded data track in the
last existent session of the volume. ‘S’ is the same value currently used in multisession
ISO 9660 recording. The first track in the session shall be a data track.

‘N’ is the physical sector number of the last recorded data sector on a disc.
If random write mode is used, the media may be formatted with zero or one audio
sessions followed by exactly one writable data session containing one track. Other
session configurations are possible but not described here. There shall be no more than
one writable partition or session at one time, and this session shall be the last session on
the disc.

6.10.3.1 Volume Recognition Sequence
The following descriptions are added to UDF (see also ISO/IEC 13346 Part 2) in order to
handle a multisession disc.

• The volume recognition area of the UDF Bridge format shall be the part of the
volume space starting at sector S + 16.

• The volume recognition space shall end in the track in which it begins. As a result of
this definition, the volume recognition area always exists in the last session of a disc.

• When recorded in Random Access mode, a duplicate Volume Recognition Sequence
shall be recorded beginning at sector N - 256.

6.10.3.2 Anchor Volume Descriptor Pointer
Anchor Volume Descriptor Pointers (AVDP) shall be recorded at the following logical
sector numbers: S + 256 and N - 256. The AVDP at sector N - 256 shall be recorded
before closing a session; it may not be recorded while a session is open.

6.10.3.3 UDF Bridge format
The UDF Bridge format allows UDF to be added to a disc that may contain another file
system. A UDF Bridge disc shall contain a UDF file system in its last session. The last
session shall follow the rules described in “Multisession and Mixed Mode” section
above. The disc may contain sessions that are based on ISO 9660, audio, vendor unique,
or a combination of file systems. The UDF Bridge format allows CD enhanced discs to
be created.

The UDF session may contain pointers to data in other sessions, pointers to data only
within the UDF session, or a combination of both. Some examples of UDF Bridge discs
are shown below.

OSTA Universal Disk Format Revision 1.02107

Multisession UDF disc

CD enhanced disc

256 sectors

16 sectors

1st Recorded Track in the last session

LSN=SLSN=0

256 sectors

16 sectors

Access to LSN=256Access to LSN=16+x

: Anchor point

: Volume recognition area

First Session

N - 256

1st session 2nd session

UDF Session

Playable by conventional CD-Player Used by UDF

OSTA Universal Disk Format Revision 1.02108

ISO 9660 converted to UDF

Foreign format converted to UDF

1st session 3rd session

9660 Session UDF Session

Written by conventional 9660 formatter software

Managed by UDF

9660 Session

2nd session

1st session 3rd session

Data Session UDF Session

Written by another file system

Managed by UDF

Data Session

2nd session

OSTA Universal Disk Format Revision 1.02109

6.106.11 UDF Media Format Revision History
The following table shows when changes to the UDF Specification have taken place that
affect the UDF format that can be recorded on a piece of media. The Document Change
Notices (DCNs) which document a specific change are referenced in the table. The
column Update in UDF Revision describes which revision of the UDF specification that
the change was included. The fields Minimum UDF Read Revision and Minimum UDF
Write Revision relate to the Revision Access Control fields described in DCN 962-015.

Description DCN Updated in
UDF

Revision

Minimum
UDF Read
Revision

Minimum
UDF Write

Revision
Allocation Extent Descriptor 962-

002
1.02 1.02 1.02

Path Component File Version Number 962-
003

1.02 1.02 1.02

Parent Directory Entries 962-
004

1.02 1.02 1.02

Device Specification Extended Attribute 962-
005

1.02 1.01 1.02

Maximum Logical Extent Length 962-
006

1.02 1.02 1.02

Unallocated Space Entry 962-
008

1.02 1.01 1.02

DVD Copyright Management Information 962-
009

1.02 1.02 1.02

Logical Volume Identifier 962-
010

1.02 1.01 1.02

Extent Length Field of an Allocation Descriptor 962-
012

1.02 1.01 1.02

Non-relocatable & Contiguous Flags 962-
013

1.02 1.01 1.02

Revision of Requirements for DVD-ROM 962-
014

1.02 1.02 1.02

Revision Access Control 962-
015

1.02 1.01 1.02

Volume Set Identifier 962-
017

1.02 1.01 1.02

UniqueIDs for Extended Attributes 962-
018

1.02 1.02 1.02

Clarification of Dstrings 962-
019

1.02 1.01 1.02

Application FreeEASpace Extended Attribute 962-
020

1.02 1.02 1.02

Update of Identifier Suffix to 1.02 962-
021

1.02 1.02 1.02

Update of Identifier Suffix to 1.50 2-025 1.50 1.50 1.50
Virtual Partition Map Entry 2-026 1.50 1.50 1.50
Allocation of Sparable Partition Map 2-027 1.50 1.50 1.50
Addition of Virtual Allocation Table 2-028 1.50 1.50 1.50
Addition of Sparing Table 2-029 1.50 1.50 1.50
Addition of Non-Allocatable Space List 2-030 1.50 1.50 1.50
Reccommmendations for CD Media 2-031 1.50 1.50 1.50

OSTA Universal Disk Format Revision 1.02110

6.116.12 Developer Registration Form
Any developer that plans on implementing ISO/IEC 13346 according to this document
should complete the developer registration form on the following page. By becoming a
registered OSTA developer you receive the following benefits:

• You will receive a list of the current OSTA registered developers and their
associated Implementation Identifiers. The developers on this list are
willingencouraged to interchange media with you to verify data interchange
between your implementation and their implementationamong
implementations.

• Notification of OSTA Technical Committee meetings. You may attend a
limited number of this meetings without becoming an official OSTA member.

• You can be added to the OSTA Technical Committee email reflector. This
reflector provides you the opportunity to post technical questions on the OSTA
Universal Disk Format Specification.

• You will receive an invitation to participate in the development of the next
revision of this document.

For the latest information on OSTA and UDF visit the OSTA web site at the following
address:

http://www.osta.org
OSTA Universal Disk Format Specification

Developer Registration Form

Name: __

Company: ___

Address: ___

__

__

City: ___

State/Province: ___

Zip/Postal Code: ___

Country: __

Phone: _________________________ FAX: __________________________________

Email: __

OSTA Universal Disk Format Revision 1.02111

Planned Operating Systems Support
Please indicate on which operating systems you plan to support ISO/IEC 13346UDF:

O DOS O OS/2 O Macintosh
O UNIX/POSIX O Windows NT O Windows 95
O Other __

Please indicate which media types you plan to support:
O Magneto Optical O WORM O Phase Change
O CD-ROM O CD-R O CD-RW
O DVD-ROM O DVD-R O DVD-RAM O DVD-Video
Implementation IdentifierO Other ___

Please indicate what value you plan to use in the Implementation Identifier field of
the Entity Identifier descriptor to identify your implementation:

__
NOTE: The identifier should be something that uniquely identifies your company as well as your product.

Miscellaneous

O Please add my email address to the OSTA Technical Committee email reflector.

O Please send an OSTA Membership kit.

FAX Completed form to OSTA at 1-805-962-1541, or mail to:
OSTA, 311 E. Carrillo Street, Santa Barbara, CA 93101

OSTA Universal Disk Format Revision 1.02112

A
Allocation Descriptor, 57, 2836, 3240, 3341
Allocation Extent Descriptor, 3441
Anchor Volume Descriptor Pointer, 46, 158

C
CD-R, 2, 3, 4, 25, 26, 100, 101, 102, 104
CD-RW, 2, 100, 102
Charspec, 79
Checksum, 48, 49, 50, 51, 5356, 57, 8758, 59, 60, 61,

65, 95
CRC, 135, 2331, 3240, 7382, 7584
CS0, 68, 79, 102, 146, 157, 169, 213, 2533, 5866, 608,

6270

D
defect management, 25, 28, 104
Descriptor Tag, 135, 2331, 3240
Domain, 1, 8, 9, 10i, 11, 13
DOS, 3746, 3847, 4251, 4352, 49, 6157, 69, 77, 78,

7986, 87, 88, 809, 81, 94110
Dstrings, 79
DVD, 2, 4856, 4957, 6876, 8877, 8996, 907, 918, 929,

108
DVD Copyright Management Information, 4856,

4957, 6876, 92108
DVD-Video, 8896, 8997

E
Entity Identifier, 46, 810, 9, 13, 1411, 15, 16, 17, 18,

19, 201, 243, 2532, 33, 2634, 2735, 308, 31, 329,
40, 479, 55, 5664, 6876, 77

Extended Attributes, 3, 20, 44, 45, 47, 48, 49, 50, 512,
52, 53, 54, 55, 56, 57, 6858, 59, 60, 61, 62, 63, 64,
65, 76

Extent Length, 46, 5362, 54, 92108

F
File Entry, 57, 912, 308, 409, 4654, 5361, 6876
File Identifier Descriptor, 911, 2735, 3746, 5967
File Set Descriptor, 57, 911, 2331, 2533
FreeSpaceTable, 1820, 1921

H
HardWriteProtect, 113, 179, 2432, 2634

I
ICB, 57, 2735, 2836, 3746, 3847, 4452, 5866, 5967
ICB Tag, 57, 2836, 3847, 5866
Implementation Use Volume Descriptor, 911, 213,

6674

ImplementationIdentifier, 14, 15, 16, 17, 18, 19, 203,
2533, 308, 31, 329, 40, 47, 48, 49, 50, 51, 53, 55,
56, 57, 58, 59, 61, 63, 64

ISO/IEC 13346, 1i

L
Logical Block Size, 46, 57, 179
Logical Sector Size, 46
Logical Volume Descriptor, 57, 9, 1611, 18, 1920, 22
Logical Volume Header Descriptor, 1921, 3645
Logical Volume Integrity Descriptor, 102, 179, 1820,

3240
LogicalVolumeIdentifier, 57

M
Macintosh, 3, 20, 31, 36, 372, 39, 43, 445, 46, 48, 50,

51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64,
68, 6971, 76, 78, 90, 82, 94110

N
NetWare, 6979
Non-Allocatable Space, 29, 30, 42, 103

O
Orphan Space, 6674
OS/2, 3, 3746, 3847, 4251, 43, 48, 49, 5052, 56, 597,

6158, 624, 67, 68, 6970, 76, 77, 8278, 8690, 94,
110

Overwritable, 3, 46

P
Partition Descriptor, 4, 9, 66, 90packet, 4, 5, 25, 26,

28, 29, 30, 101, 102, 103, 104
Partition Descriptor, 6, 11, 74, 98
Partition Header Descriptor, 2634
Partition Integrity Entry, 57, 102, 3240
Pathname, 3442
Primary Volume Descriptor, 46, 911, 135

R
Read-Only, 3, 46
Records, 57, 3443
Rewritable, 36, 34, 26, 3341

S
SizeTable, 1820, 1921
SoftWriteProtect, 113, 179, 34
Sparable Partition Map, 25
Sparing Table, 12, 26, 28, 29, 76, 77
strategy, 57, 2432, 2836
SymbolicLink, 5866

OSTA Universal Disk Format Revision 1.02113

T
TagSerialNumber, 135, 2331
Timestamp, 46, 810, 1820, 3544

U
Unallocated Space Descriptor, 57, 1820
Unicode, 68, 79, 5967, 608, 780
UniqueID, 1821, 308, 319, 3645, 409, 4452, 5361,

5462, 683, 9276, 77, 108
UNIX, 37, 39, 5546, 6448, 63, 72, 73

V
VAT, 5, 25, 26, 27, 28, 51, 100, 101, 102
Virtual Allocation Table, 5, 26, 27, 28
virtual partition, 25, 27, 101
Virtual Partition Map, 25

W
Windows, 3746, 3847, 4957, 619
Windows 95, 6946, 47, 72, 78, 110
Windows NT, 6946, 47, 57, 72, 78, 79, 90, 110
WORM, 36, 420, 17, 2432

